Bill_zhang5
码龄8年
关注
提问 私信
  • 博客:225,067
    问答:8,506
    233,573
    总访问量
  • 45
    原创
  • 2,209,695
    排名
  • 23
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:广东省
  • 加入CSDN时间: 2017-03-17
博客简介:

Bill_zhang5的博客

查看详细资料
个人成就
  • 获得51次点赞
  • 内容获得29次评论
  • 获得257次收藏
  • 代码片获得365次分享
创作历程
  • 15篇
    2019年
  • 17篇
    2018年
  • 17篇
    2017年
成就勋章
TA的专栏
  • Java
  • SQL
    2篇
  • Linux
    3篇
  • 深度学习
    16篇
  • 机器学习
    9篇
  • Python
    22篇
  • 边缘计算
    2篇
  • 迁移学习
    2篇
  • 强化学习
    2篇
  • 自然语言处理
    1篇
  • 医疗数据挖掘
    2篇
  • 数据预处理
    13篇
  • 特征选择
    2篇
创作活动更多

HarmonyOS开发者社区有奖征文来啦!

用文字记录下您与HarmonyOS的故事。参与活动,还有机会赢奖,快来加入我们吧!

0人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

我想问问,怎么在一个神经网络模型中提高训练集的数量,我在网上搜索的时候越搜脑子越转不过来

答:

数据生成,GAN,图像可以可以简单裁剪,旋转

回答问题 2020.04.15

组卷积(group convolution)的理解

分组是日常生活中一种常见现象,如基于年龄分为幼年、儿童、青少年、青年、中年和老年等。在机器学习中,聚类算法的本质思想也是分组,即把未知数据基于一些特性分成一个个组,便于人们理解。在深度学习用到组思想的一个地方就是组卷积。组卷积最早出现是在AleNet,当初主要采用并行训练方式来训练。后来研究学者基于卷积的基本计算方式广义线性方程(或多元多项式方程)发现,当卷积网络中卷积核个数增多时,会出现卷积...
原创
发布博客 2019.08.22 ·
4867 阅读 ·
0 点赞 ·
0 评论 ·
11 收藏

请问mnist里的一个batch是怎么训练的

答:

batch_size是指一次训练使用100个样本, 和784关系不大,主要是为了网络在反向传播过程中学习到更好的参数,
如果采用CNN把100*784reshape(100,28,28,1),
前向神经网络为(100,784),784可以理解为特征个数。

回答问题 2019.08.13

两组1000个元素的数组对比,怎样得到数组里面相同元素的个数?

答:

在Python中
1、先遍历两组有多少不同元素;
2、在进行onehot编码和相减,如果数组的绝对值为了0,表明两个元素相等,通过索引得到原有数据

回答问题 2019.08.12

pytorch训练LSTM模型的代码疑问

答:
def __init__(self):
        super(Sequence,self).__init__()
        self.lstm1 = nn.LSTMCell(1,51)
        self.lstm2 = nn.LSTMCell(51,51)
        self.linear = nn.Linear(51,1)

应该是指单个LSTM cell具有多个hidden layer,为参数设置

回答问题 2019.08.12

用Keras实现圆心的识别,输出层要怎么写?

答:

可以参考一下目标检测中边框回归(Bounding Box Regression),简单来说是线性回归https://blog.csdn.net/zijin0802034/article/details/77685438

回答问题 2019.08.11

Keras 图片要如何输入?

答:

你需要认真看看一些基本教程,可以学习一下这个:https://github.com/princewen/tensorflow_practice

回答问题 2019.08.11

为什么LSTM用于分类任务效果很差?

答:

LSTM本身比较难训练,参数与hidden layer和units等有关,可以加dropout和weight normalization试试,模型本身特点理解很重要

回答问题 2019.08.11

训练数据时,什么情况下要用class_weight,什么情况下不用会更好?

答:

这个需要依据实验结果,class_weighty一般在数据不平衡情况下使用,还有一些分类效果不理想情况下使用

回答问题 2019.08.11

如何用CNN实现序列分类啊?

答:

https://github.com/sussexwearlab/DeepConvLSTM可以参考这个,你可以构造多个同构CNN,最后连接在一起,也可以用一个CNN,卷积核大小设计需要注意,另外可以参考自然语言中一些CNN模型

回答问题 2019.08.11

linux服务器安装anaconda,然后远程使用jupyter----windows环境

linux服务器安装anaconda:1.1 下载安装脚本:wget https://repo.anaconda.com/archive/Anaconda3-5.2.0-Linux-x86_64.sh1.2 运行安装向导:bash Anaconda3-5.2.0-Linux-x86_64.sh1.3 确认是否安装成功:conda --versionlinux服务器...
原创
发布博客 2019.08.11 ·
988 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

Opencv, PIL.Image和TensorFlow对图像进行resize(缩放)基于Python

一、基于OpenCV的方法def Resize_Image_cv2(img_name, height, width, method): ''' :param img_name: the name of image :param height, width: the resized heigth, width ''' img = cv2.imread(i...
原创
发布博客 2019.08.08 ·
1953 阅读 ·
0 点赞 ·
0 评论 ·
4 收藏

TensorFlow网络框架模型的保存和加载

在训练深度学习模型时, 需要对将模型的参数保存,以便以后的需要。以前训练深度学习模型主要关注网络的设计,对模型的保存和加载不太注意。最近写使用TensorFlow写深度学习框架,觉得有必要详细了解一下。最简单的保存和恢复模型的方法是使用 tf.train.Saver 对象。构造器给graph的所有变量,或是定义在列表里的变量,添加 save 和 restore ops。saver对象提供了方法...
原创
发布博客 2019.08.06 ·
320 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

基于TensorFlow的图像大小调整

import tensorflow as tfdef TF_image_Resize(path_to_images, method = 0, height =224, width =224): """ using tensorflow to preprocess image data params: method 0: Bilinear interpolation ...
原创
发布博客 2019.07.25 ·
906 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

TensorFlow批读取图片

# coding:utf-8from __future__ import print_functionimport osimport tensorflow as tfdef TF_image_data(path_to_images): """ using tensorflow to read and store data """ if not t...
原创
发布博客 2019.07.25 ·
203 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

Human Activity Recognition using GRU based on label replication strategy

import tensorflow as tfimport numpy as npfrom sklearn.metrics import classification_report# Load "X" (the neural network's training and testing inputs)from Preprocess_data import read_data_set...
原创
发布博客 2019.05.31 ·
287 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Python绘制箱形图

#coding: utf-8from __future__ import absolute_importfrom __future__ import divisionfrom __future__ import print_functionimport matplotlib.pyplot as pltimport numpy as npall_data = np.loadtxt(...
原创
发布博客 2019.05.27 ·
683 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

matplotlib绘制两个柱状图

import matplotlib.pyplot as pltimport numpy as npdata_2 = [93, 92, 93, 91, 92,93]data_3 = [57,56, 57,56,56.,54]labels = ['HL', 'ED', 'HD_2', 'HD_all', 'Voting','ME']fig,ax = plt.subplots(f...
原创
发布博客 2019.05.27 ·
3576 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

Softmax 实现源代码

import numpy as npfrom numpy.core._rational_tests import denominatordef softmax(x): #implementation one """ Compute the softmax in a numerically stable way.""" x = x- np.max(x) ...
原创
发布博客 2019.03.22 ·
1484 阅读 ·
1 点赞 ·
0 评论 ·
3 收藏

Python实现Complement Entropy Loss 参考 ICLR 2019论文 COMPLEMENT OBJECTIVE TRAINING

import numpy as npdef zero_hot(labels_dense, num_classes): """Convert class labels from scalars to one-hot vectors.""" num_labels = labels_dense.shape[0] index_offset = np.arange(...
原创
发布博客 2019.03.22 ·
944 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏
加载更多