基于TensorFlow的图像大小调整

本文介绍了一种使用TensorFlow进行图像预处理的方法,包括图像的读取、解码、类型转换及不同方法的图像缩放,如双线性插值、最近邻插值等。此外,还提供了一个选项,用于裁剪或填充图像到指定大小。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

import tensorflow as tf
def TF_image_Resize(path_to_images, method = 0, height =224, width =224):
    """
    using tensorflow to preprocess image data
    params: method 0:  Bilinear interpolation
            method 1: Nearset neighbor interploation
            method 2: Bicubic interpolation
            method 3: Area interpolation
    """
    if not tf.gfile.Exists(path_to_images):
        print("path to images does not exist")
    else:
        #search all jpeg files
        path_img_list = files = os.listdir(path_to_images)
        #path_img_list = tf.gfile.Glob(os.path.join(path_to_images, '*.jpg'))
        print(path_img_list)
        total_img = []
        for file in path_img_list:
            print("the name of jpeg file:", file)
            img_jpg = tf.gfile.FastGFile(path_to_images +'/' +file,'rb').read() 
            img_decode = tf.image.decode_jpeg(img_jpg)
            img_data = tf.image.convert_image_dtype(img_decode, dtype = tf.float32)
            img_data = tf.image.resize_images(img_data, height, width, method)
            total_img.append(img_data)
        print(len(total_img))
        return total_img 

def TF_image_Resize2(path_to_images,  height =224, width =224, choice = True):
    """
    using tensorflow to preprocess image data
    params: method 0:  Bilinear interpolation
            method 1: Nearset neighbor interploation
            method 2: Bicubic interpolation
            method 3: Area interpolation
    """
    if not tf.gfile.Exists(path_to_images):
        print("path to images does not exist")
    else:
        #search all jpeg files
        path_img_list = files = os.listdir(path_to_images)
        #path_img_list = tf.gfile.Glob(os.path.join(path_to_images, '*.jpg'))
        print(path_img_list)
        total_img = []
        for file in path_img_list:
            #print("the name of jpeg file:", file)
            img_jpg = tf.gfile.FastGFile(path_to_images +'/' +file,'rb').read() 
            img_decode = tf.image.decode_jpeg(img_jpg)
            img_data = tf.image.convert_image_dtype(img_decode, dtype = tf.float32)
            if choice:
                img_data = tf.image.resize_image_with_crop_or_pad(img_data, height, width)
                total_img.append(img_data)
            else:
                img_data = tf.image.central_crop(img_data, 0.5)
                total_img.append(img_data)
        print(len(total_img))
        return total_img 
    
    

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值