PS: 今天周日巩固一下所学的数据结构篇章
1. 如何衡量一个算法的好坏?
时间复杂度&空间复杂度(这个是次要的)
2. 什么是时间复杂度?
算法中的基本操作的执行次数
3. 时间复杂度为什么不使用时间来衡量而使用基本语句的运行次数来衡量?
因为一般和时间成正比
4. 时间复杂度的O渐进表示法
- 用1表示所有加法常数
- 在算出的运行次数中只保留最高项, 删除其他项
5. 时间复杂度的:最优、平均、最差情况,为什么时间复杂度看的是最差情况?
最大, 最小运行次数;
6. 如何求解:二分查找、递归求阶乘、递归斐波那契的时间复杂度?
二分: O(logN)
递归: O(N)
斐波那契额: O(2^n)
7. 什么是空间复杂度?
占用多少临时储存空间;
8. 如何求空间复杂度? 普通函数&递归函数
开辟了多少次空间, 多少深度;
9. 分析递归斐波那契数列的:时间、空间复杂度,并对其进行优化,伪递归优化—>循环优化
斐波那契函数:
long long Fibonacci(size_t N){
return N < 2 ? N : Fibonacci(N - 1) + Fibonacci(N - 2);
}
时间复杂度O(2^n) 空间复杂度O(N)
优化:
long long Fibonacci(long long first, long long second, int N){
if(N < 3){
return 1;
}
if(N == 3){
return first +second;
}
return Fibonacci(second, first+second, N - 1);
}
10. 常见时间复杂度
二分查找: O(logN)
递归函数(二叉树, 数分裂): O(N)
斐波那契函数(生兔子,下面之和): O(2^n)
冒泡排序: O(N^2)