Frogger

Freddy Frog is sitting on a stone in the middle of a lake. Suddenly he notices Fiona Frog who is sitting on another stone. He plans to visit her, but since the water is dirty and full of tourists' sunscreen, he wants to avoid swimming and instead reach her by jumping. 
Unfortunately Fiona's stone is out of his jump range. Therefore Freddy considers to use other stones as intermediate stops and reach her by a sequence of several small jumps. 
To execute a given sequence of jumps, a frog's jump range obviously must be at least as long as the longest jump occuring in the sequence. 
The frog distance (humans also call it minimax distance) between two stones therefore is defined as the minimum necessary jump range over all possible paths between the two stones. 

You are given the coordinates of Freddy's stone, Fiona's stone and all other stones in the lake. Your job is to compute the frog distance between Freddy's and Fiona's stone. 
Input
The input will contain one or more test cases. The first line of each test case will contain the number of stones n (2<=n<=200). The next n lines each contain two integers xi,yi (0 <= xi,yi <= 1000) representing the coordinates of stone #i. Stone #1 is Freddy's stone, stone #2 is Fiona's stone, the other n-2 stones are unoccupied. There's a blank line following each test case. Input is terminated by a value of zero (0) for n.
Output
For each test case, print a line saying "Scenario #x" and a line saying "Frog Distance = y" where x is replaced by the test case number (they are numbered from 1) and y is replaced by the appropriate real number, printed to three decimals. Put a blank line after each test case, even after the last one.
Sample Input
2
0 0
3 4

3
17 4
19 4
18 5

0
Sample Output
Scenario #1
Frog Distance = 5.000

Scenario #2
Frog Distance = 1.414

题意:小青蛙Freddy想去看小青蛙Fiona,他们中间有很多石头,Freddy通过在石头之间跳跃到达Fiona那里,因为Freddy比较懒,所以他希望每次跳的距离尽可能的短,而且,在每一条路中,他要跳的距离是所有距离最大的那个。比如第二个样例,从第一个点到第二个点有两条路线,1→2和1→3→2。1→2之间要跳2,1→3、3→2之间的距离都为sqrt(2),所以我们选择第二个方案,因为第二个方案每次Freddy只要跳sqrt(2)。

思路:最短路的变形~

代码1号:Floyd-Warshall

#include<stdio.h>//Floyd-Warshall
#include<math.h>
#include<algorithm>
using namespace std;
int main()
{
    int n,g=1;
    double x[250],y[250],a[250][250];
    while(~scanf("%d",&n)&&n)
    {
        for(int i=0;i<n;i++)
            scanf("%lf %lf",&x[i],&y[i]);
        for(int i=0;i<n;i++)
            for(int j=0;j<n;j++)
                a[i][j]=a[j][i]=sqrt((x[i]-x[j])*(x[i]-x[j])+(y[i]-y[j])*(y[i]-y[j]));
        for(int k=0;k<n;k++)
            for(int i=0;i<n;i++)
                for(int j=0;j<n;j++)
                    a[i][j]=min(a[i][j],max(a[i][k],a[j][k]));
        printf("Scenario #%d\n",g++);
        printf("Frog Distance = %.3f\n\n",a[0][1]);
    }
    return 0;
}

代码2号:Dijkstra

#include<stdio.h>//Dijkstra
#include<math.h>
#include<algorithm>
#define inf 0x3f3f3f
using namespace std;
int main()
{
    int n,g=1;
    double x[250],y[205],dis[250],a[250][250];
    int vis[250];
    while(~scanf("%d",&n),n)
    {
       for(int i=0;i<n;i++)
            scanf("%lf %lf",&x[i],&y[i]);
        for(int i=0;i<n;i++)
            for(int j=0;j<n;j++)
                a[i][j]=a[j][i]=sqrt((x[i]-x[j])*(x[i]-x[j])+(y[i]-y[j])*(y[i]-y[j]));
        for(int i=0;i<n;i++)
        {
            dis[i]=a[0][i];
            vis[i]=0;
        }
        vis[0]=1;
        for(int i=0;i<n-1;i++)
        {
            int k;
            double mi=inf;
            for(int j=0;j<n;j++)
            {
                if(vis[j]==0&&dis[j]<mi)
                {
                    mi=dis[j];
                    k=j;
                }
            }
            vis[k]=1;
            for(int j=0;j<n;j++)
                dis[j]=min(dis[j],max(dis[k],a[k][j]));
        }
        printf("Scenario #%d\n",g++);
        printf("Frog Distance = %.3f\n\n",dis[1]);
    }
    return 0;
}

代码3号:spfa

没有完全掌握~

然后spfa()那一段是别人的代码~

点击打开原代码链接

#include<stdio.h>
#include<math.h>
#include<queue>
#include<algorithm>
#define inf 0x3f3f3f
using namespace std;
int n,g=1,vis[250];
double x[250],y[250],dis[250],a[250][250];
void spfa()
{
    queue<int>q;
    int i,j;
    for(i=1; i<n; i++)
    {
        dis[i]=inf;
        vis[i]=0;
    }
    dis[0]=0;
    q.push(0);
    vis[0]=1;
    while(!q.empty())
    {
        i=q.front();
        q.pop();
        vis[i]=0;
        for(j=0; j<n; j++)
        {
            if(dis[j]>max(dis[i],a[i][j]))
            {
                dis[j]=max(dis[i],a[i][j]);
                if(vis[j]==0)
                {
                    q.push(j);
                    vis[j]=1;
                }
            }
        }
    }
}
int main()
{
    while(~scanf("%d",&n)&&n)
    {
        for(int i=0; i<n; i++)
            scanf("%lf %lf",&x[i],&y[i]);
        for(int i=0; i<n; i++)
            for(int j=0; j<n; j++)
                a[i][j]=a[j][i]=sqrt((x[i]-x[j])*(x[i]-x[j])+(y[i]-y[j])*(y[i]-y[j]));
        spfa();
        printf("Scenario #%d\n",g++);
        printf("Frog Distance = %.3f\n\n",dis[1]);
    }
    return 0;
}
阅读更多
想对作者说点什么? 我来说一句
相关热词

没有更多推荐了,返回首页