# Silver Cow Party

One cow from each of N farms (1 ≤ N ≤ 1000) conveniently numbered 1..N is going to attend the big cow party to be held at farm #X (1 ≤ X ≤ N). A total of M (1 ≤ M≤ 100,000) unidirectional (one-way roads connects pairs of farms; road i requires Ti (1 ≤ Ti ≤ 100) units of time to traverse.

Each cow must walk to the party and, when the party is over, return to her farm. Each cow is lazy and thus picks an optimal route with the shortest time. A cow's return route might be different from her original route to the party since roads are one-way.

Of all the cows, what is the longest amount of time a cow must spend walking to the party and back?

Input
Line 1: Three space-separated integers, respectively: NM, and X
Lines 2.. M+1: Line i+1 describes road i with three space-separated integers: Ai,Bi, and Ti. The described road runs from farm Ai to farm Bi, requiring Ti time units to traverse.
Output
Line 1: One integer: the maximum of time any one cow must walk.
Sample Input
4 8 2
1 2 4
1 3 2
1 4 7
2 1 1
2 3 5
3 1 2
3 4 4
4 2 3
Sample Output
10
Hint

Cow 4 proceeds directly to the party (3 units) and returns via farms 1 and 3 (7 units), for a total of 10 time units.

#include<stdio.h>
#include<string.h>
#define inf 0x3f3f3f
#include<algorithm>
using namespace std;
int n,m,x,a,b,t,ans=0,e[1200][1200],dis1[1200],dis2[1200],vis1[1200],vis2[1200];
int main()
{
scanf("%d %d %d",&n,&m,&x);
for(int i=1; i<=n; i++)
{
for(int j=1; j<=n; j++)
e[i][j]=(i==j)?0:inf;
}
for(int i=0; i<m; i++)
{
scanf("%d %d %d",&a,&b,&t);
e[a][b]=min(e[a][b],t);
}
for(int i=1;i<=n;i++)
{
dis1[i]=e[i][x];//dis1记录的是从i农场到x农场的最小耗时
dis2[i]=e[x][i];//dis2记录的是从x农场回到i农场的最小耗时
}
for(int i=1;i<=n;i++)
{
int k1,k2,mi1=inf,mi2=inf;
for(int j=1;j<=n;j++)
{
if(vis1[j]==0&&dis1[j]<mi1)
{
mi1=dis1[j];
k1=j;
}
if(vis2[j]==0&&dis2[j]<mi2)
{
mi2=dis2[j];
k2=j;
}
}
vis1[k1]=1;
vis2[k2]=1;
for(int j=1;j<=n;j++)
{
dis1[j]=min(dis1[j],dis1[k1]+e[j][k1]);//最开始写成dis1[k1]+e[k1][j]，WA了一发，dis1[k1]+e[k1][j]的意思是k1→x+k1→j，而我们要的是j→k1+k1→x
dis2[j]=min(dis2[j],dis2[k2]+e[k2][j]);
}
}
for(int i=1; i<=n; i++)
ans=max(ans,dis1[i]+dis2[i]);//我们要的是来回共耗时最大的一个~~~
printf("%d\n",ans);
return 0;
}