PAT (Basic Level) Practice1007 素数对猜想

30 篇文章 0 订阅

1007 素数对猜想

一、题目

让我们定义 d n d_n dn d n = p n + 1 − p n d_n=p_{n+1}-p_n dn=pn+1pn,其中​​ p i p_i pi 是第 i i i 个素数。显然有 d 1 = 1 d_1=1 d1=1,且对于 n > 1 n>1 n>1 d n d_n dn 是偶数。“素数对猜想” 认为 “存在无穷多对相邻且差为2的素数”。
现给定任意正整数N ( < 1 0 5 ) (<10^5) (<105),请计算不超过N的满足猜想的素数对的个数。

二、输入输出

输入格式

输入在一行给出正整数N

输出格式

在一行中输出不超过N的满足猜想的素数对的个数。

三、样例

输入样例

20

输出样例

4

四、题目分析

简单的按照模拟的方法,遍历完所有数值对,对每个数值进行判断,可以解决。但是效率不高,可以进行如下优化:

  • 所有的素数对都为奇数,循环步长设为2;
  • 最小的素数对为(3,5),循环初始值设为5;
  • 无需对同一个数值进行两次素数判断,可以设置两个布尔变量保存上一数值的判断结果。

五、代码

#include <bits/stdc++.h>
using namespace std;
int main()
{
    int count=0;
    int n;
    cin>>n;
    bool num1=true,num2=true;
    for(int i=5;i<=n;i=i+2)
    {
        num2=true;
        for(int j=2;j<sqrt(i)+1;j++)
        {
            if(i%j==0)
            {
                num2=false;
                break;
            }
        }
        if(num1&&num2)count++;
        num1=num2;
    }
    cout<<count;

    return 0;
}

六、总结

  • 素数的判断:

    for (int j = 2; j < sqrt(i) + 1; j++)
    {
        if (i % j == 0)
        {
            num2 = false;
            break;
        }
    }
    

    循环从2开始,到sqrt(i) + 1,防止浮点误差导致将一些完全平方数(除1和自身以外只含有一个质数因子,如9、25…)判断为素数。
    例如 i = 9
    sqrt(i)2.99999,若是只循环至sqrt(i),无法对因数3进行判断,因此将9误判为素数。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

BkbK-

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值