元模式:MapReduce 作业链的实现与优化
在数据处理和分析领域,处理复杂问题往往需要将多个任务组合起来。元模式(Metapatterns)正是处理这类问题的有效方法,它涉及将多个模式组合在一起,以解决复杂的多阶段问题。本文将深入探讨作业链(Job Chaining)和作业合并(Job Merging)这两种元模式,重点介绍作业链的实现方法和示例。
1. 元模式概述
元模式是关于模式的模式,主要包括作业链和作业合并两种方法。作业链是将多个模式拼接在一起,用于解决复杂的多阶段问题;作业合并则是在同一个 MapReduce 作业中执行多个分析任务,实现一举多得的效果。
2. 作业链的重要性与挑战
许多复杂问题无法通过单个 MapReduce 作业解决,作业链应运而生。在作业链中,有些作业可以并行运行,有些作业的输出会作为其他作业的输入。然而,作业链的处理较为复杂,大多数 MapReduce 框架并未将其作为开箱即用的功能。例如,Hadoop 虽然能很好地处理单个 MapReduce 作业,但处理多阶段作业需要大量手动编码。此外,还需要考虑作业阶段失败的处理和中间输出的清理等操作。
3. 作业链的常见问题与解决方案
- 临时文件大小问题 :MapReduce 链中的临时文件大小可能是一个大问题。如果临时文件过小,会导致启动过多的 Map 任务来加载它们,从而产生大量开销。在非链式作业中,Reducer 的数量通常更多地取决于接收的数据量,而不是要输出的数据量。在链式作业中,输出文件的大小可能更为重要,即使 Reducer 运行时间会稍长一些,也应尽量使输出文件大小接近
订阅专栏 解锁全文
1438

被折叠的 条评论
为什么被折叠?



