4403: 序列统计
Time Limit: 3 Sec
Memory Limit: 128 MB
Submit: 700
Solved: 339
Description
给定三个正整数N、L和R,统计长度在1到N之间,元素大小都在L到R之间的单调不降序列的数量。输出答案对10^6+3取模的结果。
Input
输入第一行包含一个整数T,表示数据组数。第2到第T+1行每行包含三个整数N、L和R,N、L和R的意义如题所述。
Output
输出包含T行,每行有一个数字,表示你所求出的答案对106+3取模的结果。
Sample Input
21 4 52 4 5
Sample Output
25
HINT
提示
【样例说明】满足条件的2个序列为[4]和[5]。
【数据规模和约定】对于100%的数据,1≤N,L,R≤10^9,1≤T≤100,输入数据保证L≤R。
对于不降的数列,我们考虑将它的第i项+i 于是就成为了不降序列
于是对于长度为i的数列M=R−L+1答案为 CM−1i+M−1
最后结果为
CMN+M−1
#include<cmath>
#include<ctime>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<complex>
#include<iostream>
#include<algorithm>
#include<iomanip>
#include<vector>
#include<string>
#include<queue>
#include<set>
#include<map>
using namespace std;
typedef long long ll;
inline ll read()
{
ll x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch<='9'&&ch>='0'){x=10*x+ch-'0';ch=getchar();}
return x*f;
}
const ll mod=1000003;
ll fac[mod<<1],inv[mod<<1];
void initial()
{
fac[1]=fac[0]= 1;inv[1]=inv[0]=1;for(ll i=2;i<mod;i++)fac[i]=i*fac[i-1]%mod;
for(int i=2;i<mod;i++)inv[i]=(mod-mod/i)*inv[mod%i]%mod;
for(int i=2;i<mod;i++)(inv[i]*=inv[i-1])%=mod;
}
ll Lucas(ll m,ll n)
{
if(m>n)return 0;
if(m<=mod&&n<=mod)return fac[n]*inv[n-m]%mod*inv[m]%mod;
else return Lucas(m%mod,n%mod)*Lucas(m/mod,n/mod)%mod;
}
int main()
{
ll T=read();initial();
while(T--)
{
ll ans=0;
int n=read(),l=read(),r=read();
printf("%d\n",(Lucas(r-l+1,r-l+1+n)-1+mod)%mod);
}
return 0;
}
CMN+M−1