2813: 奇妙的Fibonacci
Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 536 Solved: 152
[Submit][Status][Discuss]
Description
Fibonacci数列是这样一个数列:
F1 = 1, F2 = 1, F3 = 2 . . .
Fi = Fi-1 + Fi-2 (当 i >= 3)
pty忽然对这个古老的数列产生了浓厚的兴趣,他想知道:对于某一个Fibonacci数Fi,
有多少个Fj能够整除Fi (i可以等于j),他还想知道所有j的平方之和是多少。
Input
第一行一个整数Q,表示Q个询问。
第二行四个整数:Q1, A, B, C
第i个询问Qi = (Qi-1 * A + B) mod C + 1(当i >= 2)
Output
Ai代表第i个询问有多少个Fj能够整除FQi。
Bi代表第i个询问所有j的平方之和。
输出包括两行:
第一行是所有的Ai之和。
第二行是所有的Bi之和。
由于答案过大,只需要输出除以1000000007得到的余数即可。
Sample Input
2
2 2 1 8
2 2 1 8
Sample Output
6
55
55
HINT
对于100%的数据保证:Q <= 3*10^6,C <= 10^7,A <= 10^7,B <= 10^7,1 <= Q1<= C
证明有很多。。不看题解我不会
所以。。。
线性筛约数个数,平方和
#include<cmath>
#include<ctime>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<complex>
#include<iostream>
#include<algorithm>
#include<iomanip>
#include<vector>
#include<string>
#include<queue>
#include<set>
#include<map>
using namespace std;
typedef long long ll;
inline int read()
{
int x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch<='9'&&ch>='0'){x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}
return f*x;
}
const int N=10001000;const ll mod=1000000007;
ll n,x,a,b,c;
int prime[N],cnt,mn[N],cot[N],ci[N],sqr[N];
//sqr Ô¼Êýƽ·½ cot Ô¼Êý¸öÊý ci ×îСÖÊÒò×Ó´ÎÊý mn ³ýÈ¥×îСÖÊÒò×ÓµÄÔ¼Êý
bool book[N];
void initial()
{
sqr[1]=1;cot[1]=1;
for(int i=2;i<=N;i++)
{
if(!book[i])
{
prime[++cnt]=i;mn[i]=ci[i]=1;cot[i]=2;sqr[i]=(1ll*i*i+1)%mod;
}
for(int j=1;j<=cnt&&prime[j]*i<=N;j++)
{
book[i*prime[j]]=1;
mn[prime[j]*i]=i;ci[prime[j]*i]=1;cot[prime[j]*i]=cot[i]<<1;
sqr[prime[j]*i]=(1ll*sqr[i]*prime[j]*prime[j]+sqr[i])%mod;
if(i%prime[j]==0)
{
mn[prime[j]*i]=mn[i];ci[prime[j]*i]=ci[i]+1;
cot[prime[j]*i]=cot[i]/ci[prime[j]*i]*(ci[prime[j]*i]+1);
sqr[prime[j]*i]=(1ll*sqr[i]*prime[j]*prime[j]+sqr[mn[i]])%mod;
break;
}
}
}
}
int main()
{
initial();n=read();x=read();a=read();b=read();c=read();a%=c;b%=c;
int ans1=0,ans2=0;
for(int i=1;i<=n;i++)
{
if(i!=1)x=(x*a+b)%c+1;
ans1+=(cot[x]+(x&1));ans2+=(sqr[x]+(x&1)*4);ans1%=mod;ans2%=mod;
}
printf("%d\n%d\n",ans1,ans2);
return 0;
}
/*
2
2 2 1 8
6 55
*/