2850: 巧克力王国
Time Limit: 60 Sec Memory Limit: 512 MBSubmit: 769 Solved: 284
[Submit][Status][Discuss]
Description
巧克力王国里的巧克力都是由牛奶和可可做成的。但是并不是每一块巧克力都受王国人民的欢迎,因为大家都不喜欢过于甜的巧克力。对于每一块巧克力,我们设x和y为其牛奶和可可的含量。由于每个人对于甜的程度都有自己的评判标准,所以每个人都有两个参数a和b,分别为他自己为牛奶和可可定义的权重,因此牛奶和可可含量分别为x和y的巧克力对于他的甜味程度即为ax + by。而每个人又有一个甜味限度c,所有甜味程度大于等于c的巧克力他都无法接受。每块巧克力都有一个美味值h。现在我们想知道对于每个人,他所能接受的巧克力的美味值之和为多少
Input
第一行两个正整数n和m,分别表示巧克力个数和询问个数。接下来n行,每行三个整数x,y,h,含义如题目所示。再接下来m行,每行三个整数a,b,c,含义如题目所示。
Output
输出m行,其中第i行表示第i个人所能接受的巧克力的美味值之和。
Sample Input
3 3
1 2 5
3 1 4
2 2 1
2 1 6
1 3 5
1 3 7
1 2 5
3 1 4
2 2 1
2 1 6
1 3 5
1 3 7
Sample Output
5
0
4
0
4
HINT
1 <= n, m <= 50000,1 <= 10^9,-10^9 <= a, b, x, y <= 10^9。
这个题不告诉我 我不会写kdtree的 (所以我就不会写了)
维护一下子树权值和
当一个节点内包含的所有情况都满足条件时 ans+=子树权值和
再顺着有可能的点遍历 就结束了
查询复杂度期望O(√n)
觉得挺玄学
然而想一想觉得好像也确实卡不掉
#include<cmath>
#include<ctime>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<complex>
#include<iostream>
#include<algorithm>
#include<iomanip>
#include<vector>
#include<string>
#include<bitset>
#include<queue>
#include<map>
#include<set>
using namespace std;
typedef long long ll;
inline int read()
{
int x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch<='9'&&ch>='0'){x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}
return x*f;
}
void print(ll x)
{if(x<0)putchar('-'),x=-x;if(x>=10)print(x/10);putchar(x%10+'0');}
const int N=50010,inf=0X7f7f7f7f;
int root;
bool cur;
struct P
{
int d[2],mn[2],mx[2],ls,rs;ll sum,val;
inline int& operator [](int x){return d[x];}
friend bool operator < (const P &x,const P &y){return x.d[cur]<y.d[cur];}
}p[N];
struct kdtree
{
P tr[N];ll ans,a,b,c;
inline void pushup(int k)
{
register int i;
for(i=0;i<2;++i)
{
tr[k].mn[i]=tr[k].mx[i]=tr[k][i];
if(tr[k].ls)tr[k].mx[i]=max(tr[k].mx[i],tr[tr[k].ls].mx[i]),tr[k].mn[i]=min(tr[k].mn[i],tr[tr[k].ls].mn[i]);
if(tr[k].rs)tr[k].mx[i]=max(tr[k].mx[i],tr[tr[k].rs].mx[i]),tr[k].mn[i]=min(tr[k].mn[i],tr[tr[k].rs].mn[i]);
}
tr[k].sum+=tr[tr[k].ls].sum+tr[tr[k].rs].sum;
}
int build(int l,int r,bool now)
{
cur=now;int mid=l+r>>1;
nth_element(p+l,p+mid,p+r+1);
tr[mid]=p[mid];
if(mid>l)tr[mid].ls=build(l,mid-1,now^1);
if(mid<r)tr[mid].rs=build(mid+1,r,now^1);
pushup(mid);return mid;
}
inline ll getsweet(int x,int y)
{return 1ll*x*a+1ll*y*b;}
inline int check(int k)
{
register int tmp=0;
if(getsweet(tr[k].mn[0],tr[k].mn[1])<c)tmp++;
if(getsweet(tr[k].mn[0],tr[k].mx[1])<c)tmp++;
if(getsweet(tr[k].mx[0],tr[k].mn[1])<c)tmp++;
if(getsweet(tr[k].mx[0],tr[k].mx[1])<c)tmp++;
return tmp;
}
void query_limsum(int k)
{
if(getsweet(tr[k][0],tr[k][1])<c)ans+=tr[k].val;
int tmp;
if(tr[k].ls)
{
tmp=check(tr[k].ls);
if(!(tmp^4))ans+=tr[tr[k].ls].sum;
else if(tmp)query_limsum(tr[k].ls);
}
if(tr[k].rs)
{
tmp=check(tr[k].rs);
if(!(tmp^4))ans+=tr[tr[k].rs].sum;
else if(tmp)query_limsum(tr[k].rs);
}
}
inline ll query(int x,int y,int z)
{
a=x,b=y,c=z;ans=0;query_limsum(root);
return ans;
}
}kdtree;
int main()
{
int n=read(),Q=read();
register int i,j,k;
for(i=1;i<=n;++i)
{p[i][0]=read();p[i][1]=read();p[i].sum=p[i].val=read();}
root=kdtree.build(1,n,0);
while(Q--)
{
i=read();j=read();k=read();
print(kdtree.query(i,j,k));puts("");
}
return 0;
}
/*
3 3
1 2 5
3 1 4
2 2 1
2 1 6
1 3 5
1 3 7
5
0
4
*/