2115: [Wc2011] Xor
Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 3439 Solved: 1457
[Submit][Status][Discuss]
Description
Input
第一行包含两个整数N和 M, 表示该无向图中点的数目与边的数目。 接下来M 行描述 M 条边,每行三个整数Si,Ti ,Di,表示 Si 与Ti之间存在 一条权值为 Di的无向边。 图中可能有重边或自环。
Output
仅包含一个整数,表示最大的XOR和(十进制结果),注意输出后加换行回车。
Sample Input
5 7
1 2 2
1 3 2
2 4 1
2 5 1
4 5 3
5 3 4
4 3 2
1 2 2
1 3 2
2 4 1
2 5 1
4 5 3
5 3 4
4 3 2
Sample Output
6
HINT
这篇题解不错。。。我太懒了。。。
http://blog.csdn.net/crzbulabula/article/details/52826688
#include<cmath>
#include<ctime>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<complex>
#include<iostream>
#include<algorithm>
#include<iomanip>
#include<vector>
#include<string>
#include<bitset>
#include<queue>
#include<map>
#include<set>
using namespace std;
typedef long long ll;
inline ll read()
{
ll x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch<='9'&&ch>='0'){x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}
return x*f;
}
void print(int x)
{if(x<0)putchar('-'),x=-x;if(x>=10)print(x/10);putchar(x%10+'0');}
const int N=50100,M=200100;
int ecnt,last[N];
struct EDGE{int to,nt;ll val;}e[M];
inline void add(int u,int v,ll val)
{e[++ecnt]=(EDGE){v,last[u],val};last[u]=ecnt;}
int n,m,clr;
ll a[M],d[N];
bool vis[N];
void dfs(int u)
{
vis[u]=1;
for(int i=last[u];i;i=e[i].nt)
if(!vis[e[i].to])
{
d[e[i].to]=d[u]^e[i].val;
dfs(e[i].to);
}
else a[++clr]=d[e[i].to]^d[u]^e[i].val;
}
void guass()
{
register int i,j,k=0;
for(i=60;i>=0;i--)
{
for(j=k+1;j<=clr;++j)if((1ll<<i)&a[j])break;
if(j>clr)continue;
swap(a[++k],a[j]);
for(j=1;j<=clr;++j)if(((1ll<<i)&a[j])&&j!=k)a[j]^=a[k];
}
clr=k;
}
void solve()
{
ll ans=d[n];
register int i;
for(i=1;i<=clr;++i)if((a[i]^ans)>ans)ans^=a[i];
printf("%lld\n",ans);
}
int main()
{
n=read();m=read();
register int i,u,v;ll val;
for(i=1;i<=m;++i){u=read();v=read();val=read();add(u,v,val);add(v,u,val);}
dfs(1);guass();solve();
return 0;
}
/*
5 7
1 2 2
1 3 2
2 4 1
2 5 1
4 5 3
5 3 4
4 3 2
6
*/