BZOJ 2115: [Wc2011] Xor 线性基

2115: [Wc2011] Xor

Time Limit: 10 Sec  Memory Limit: 259 MB
Submit: 3439  Solved: 1457
[Submit][Status][Discuss]

Description

Input

第一行包含两个整数N和 M, 表示该无向图中点的数目与边的数目。 接下来M 行描述 M 条边,每行三个整数Si,Ti ,Di,表示 Si 与Ti之间存在 一条权值为 Di的无向边。 图中可能有重边或自环。

Output

仅包含一个整数,表示最大的XOR和(十进制结果),注意输出后加换行回车。

Sample Input

5 7
1 2 2
1 3 2
2 4 1
2 5 1
4 5 3
5 3 4
4 3 2

Sample Output

6

HINT


这篇题解不错。。。我太懒了。。。

http://blog.csdn.net/crzbulabula/article/details/52826688


#include<cmath>
#include<ctime>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<complex>
#include<iostream>
#include<algorithm>
#include<iomanip>
#include<vector>
#include<string>
#include<bitset>
#include<queue>
#include<map>
#include<set>
using namespace std;

typedef long long ll;

inline ll read()
{
	ll x=0,f=1;char ch=getchar();
	while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
	while(ch<='9'&&ch>='0'){x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}
	return x*f;
}
void print(int x)
{if(x<0)putchar('-'),x=-x;if(x>=10)print(x/10);putchar(x%10+'0');}

const int N=50100,M=200100;

int ecnt,last[N];
struct EDGE{int to,nt;ll val;}e[M];
inline void add(int u,int v,ll val)
{e[++ecnt]=(EDGE){v,last[u],val};last[u]=ecnt;}

int n,m,clr;

ll a[M],d[N];

bool vis[N];

void dfs(int u)
{
	vis[u]=1;
	for(int i=last[u];i;i=e[i].nt)
	if(!vis[e[i].to])
	{
		d[e[i].to]=d[u]^e[i].val;
		dfs(e[i].to);
	}
	else a[++clr]=d[e[i].to]^d[u]^e[i].val;
}

void guass()
{
	register int i,j,k=0;
	for(i=60;i>=0;i--)
	{
		for(j=k+1;j<=clr;++j)if((1ll<<i)&a[j])break;
		if(j>clr)continue;
		swap(a[++k],a[j]);
		for(j=1;j<=clr;++j)if(((1ll<<i)&a[j])&&j!=k)a[j]^=a[k];
	}
	clr=k;
}

void solve()
{
	ll ans=d[n];
	register int i;
	for(i=1;i<=clr;++i)if((a[i]^ans)>ans)ans^=a[i];
	printf("%lld\n",ans);
}

int main()
{
	n=read();m=read();
	register int i,u,v;ll val;
	for(i=1;i<=m;++i){u=read();v=read();val=read();add(u,v,val);add(v,u,val);}
	dfs(1);guass();solve();
	return 0;
}
/*
5 7
1 2 2
1 3 2
2 4 1
2 5 1
4 5 3
5 3 4
4 3 2

6
*/


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值