BZOJ 2527: [Poi2011]Meteors 整体二分 树状数组

2527: [Poi2011]Meteors

Time Limit: 60 Sec  Memory Limit: 128 MB
Submit: 1743  Solved: 621
[Submit][Status][Discuss]

Description

Byteotian Interstellar Union (BIU) has recently discovered a new planet in a nearby galaxy. The planet is unsuitable for colonisation due to strange meteor showers, which on the other hand make it an exceptionally interesting object of study.
The member states of BIU have already placed space stations close to the planet's orbit. The stations' goal is to take samples of the rocks flying by. The BIU Commission has partitioned the orbit into msectors, numbered from 1to m, where the sectors 1and mare adjacent. In each sector there is a single space station, belonging to one of the nmember states.
Each state has declared a number of meteor samples it intends to gather before the mission ends. Your task is to determine, for each state, when it can stop taking samples, based on the meter shower predictions for the years to come.
Byteotian Interstellar Union有N个成员国。现在它发现了一颗新的星球,这颗星球的轨道被分为M份(第M份和第1份相邻),第i份上有第Ai个国家的太空站。

这个星球经常会下陨石雨。BIU已经预测了接下来K场陨石雨的情况。
BIU的第i个成员国希望能够收集Pi单位的陨石样本。你的任务是判断对于每个国家,它需要在第几次陨石雨之后,才能收集足够的陨石。
输入:
第一行是两个数N,M。
第二行有M个数,第i个数Oi表示第i段轨道上有第Oi个国家的太空站。
第三行有N个数,第i个数Pi表示第i个国家希望收集的陨石数量。
第四行有一个数K,表示BIU预测了接下来的K场陨石雨。
接下来K行,每行有三个数Li,Ri,Ai,表示第K场陨石雨的发生地点在从Li顺时针到Ri的区间中(如果Li<=Ri,就是Li,Li+1,...,Ri,否则就是Ri,Ri+1,...,m-1,m,1,...,Li),向区间中的每个太空站提供Ai单位的陨石样本。
输出:
N行。第i行的数Wi表示第i个国家在第Wi波陨石雨之后能够收集到足够的陨石样本。如果到第K波结束后仍然收集不到,输出NIE。
数据范围:

数据范围: 1<=n,m,k<=3*10^5 1<=Pi<=10^9 1<=Ai<10^9

Input

The first line of the standard input gives two integers, n and m(1<=n,m<=3*10^5) separated by a single space, that denote, respectively, the number of BIU member states and the number of sectors the orbit has been partitioned into.
In the second line there are mintegers Oi(1<=Oi<=n) separated by single spaces, that denote the states owning stations in successive sectors.
In the third line there are nintegers Pi(1<=Pi<=10^9) separated by single spaces, that denote the numbers of meteor samples that the successive states intend to gather.
In the fourth line there is a single integer k(1<=k<=3*10^5) that denotes the number of meteor showers predictions. The following klines specify the (predicted) meteor showers chronologically. The i-th of these lines holds three integers Li, Ri, Ai(separated by single spaces), which denote that a meteor shower is expected in sectors Li,Li+1,…Ri (if Li<=Ri) or sectors Li,Li+1,…,m,1,…Ri (if Li>Ri), which should provide each station in those sectors with Aimeteor samples (1<=Ai<10^9).
In tests worth at least 20% of the points it additionally holds that .

Output

 
Your program should print nlines on the standard output. The i-th of them should contain a single integer Wi, denoting the number of shower after which the stations belonging to the i-th state are expected to gather at least Pi samples, or the word NIE (Polish for no) if that state is not expected to gather enough samples in the foreseeable future.

Sample Input

3 5
1 3 2 1 3
10 5 7
3
4 2 4
1 3 1
3 5 2

Sample Output

3
NIE
1

第一道整体二分

感觉思想真是很精巧,这道题中树状数组的应用也很棒

说一说题解吧

有时候对于题目里的询问,我们可以二分,然后每次O(n)或者O(nlog n)判定
但是如果题目有多个询问呢?每个询问单独判断复杂度就变成O(nm lon n)了
我们可以对所有询问一起二分,维护每个询问当前的二分区间和mid值,然后O(n)或者O(nlog n)同时判定所有询问
所以这里,我们就可以二分波数,对区间进行判定,可行的放一边,不可行另一边,继续递归
我们再来思考如何动态维护每个位置的陨石数量
暴力修改就不说了,直接来讲优秀的解法
用差分的思想,在圆上对于(l,r)进行修改
树状数组维护前缀和,这样就可以以优越的复杂度来完成这个子问题
这样就搞掉这道整体二分辣

#include<cmath>
#include<ctime>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<iostream>
#include<algorithm>
#include<iomanip>
#include<vector>
#include<string>
#include<bitset>
#include<queue>
#include<set>
#include<map>
using namespace std;

typedef long long ll;

inline int read()
{
	int x=0,f=1;char ch=getchar();
	while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
	while(ch>='0'&&ch<='9'){x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}
	return x*f;
}
void print(int x)
{if(x<0)x=-x,putchar('-');if(x>=10)print(x/10);putchar(x%10+'0');}

const int N=300100,inf=0X3f3f3f3f;

vector<int>a[N];

int n,m,now,ans[N],fan[N],L[N],R[N];

ll bit[N],w[N],v[N];

inline void bitmodify(int x,ll val)
{for(;x<=m;x+=(x&-x))bit[x]+=val;}

inline void modify(int x,ll val)
{bitmodify(L[x],v[x]*val);bitmodify(R[x]+1,-v[x]*val);if(L[x]>R[x])bitmodify(1,val*v[x]);}

inline ll query(int x)
{ll res=0;for(;x;x-=(x&-x))res+=bit[x];return res;}

int tmp1[N],tmp2[N];

inline bool check(int x)
{
	register int i;ll res=0;
	for(i=0;i<a[x].size();++i)
	{res+=query(a[x][i]);if(res>=w[x])return 1;}
	return 0;
}

void solve(int x,int y,int l,int r)
{
	register int mid,i,cnt1=0,cnt2=0;
	if(x>y||l==r){for(i=x;i<=y;++i)ans[fan[i]]=l;return ;}
	mid=(l+r)>>1;
	while(now<mid)now++,modify(now,1);
	while(now>mid)modify(now,-1),now--;
	for(i=x;i<=y;++i)
	{if(check(fan[i]))tmp1[++cnt1]=fan[i];else tmp2[++cnt2]=fan[i];}
	for(i=x;i<x+cnt1;++i)fan[i]=tmp1[i-x+1];
	for(i=x+cnt1;i<=y;++i)fan[i]=tmp2[i-x-cnt1+1];
	solve(x,x+cnt1-1,l,mid);solve(x+cnt1,y,mid+1,r);
}

int main()
{
	n=read();m=read();
	register int i,x;
	for(i=1;i<=m;++i){x=read();a[x].push_back(i);}
	for(i=1;i<=n;++i){w[i]=read();fan[i]=i;}
	int Q=read();
	for(i=1;i<=Q;++i){L[i]=read();R[i]=read();v[i]=read();}
	solve(1,n,1,Q+1);
	for(i=1;i<=n;++i)
	{
		if(ans[i]&&ans[i]!=Q+1)print(ans[i]),puts("");
		else puts("NIE");
	}
	return 0;
}
/*
3 5
1 3 2 1 3
10 5 7
3
4 2 4
1 3 1
3 5 2

3
NIE
1
*/

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值