BZOJ 2400: Spoj 839 Optimal Marks 最小割

2400: Spoj 839 Optimal Marks

Time Limit: 10 Sec  Memory Limit: 128 MB
Submit: 910  Solved: 349
[Submit][Status][Discuss]

Description

定义无向图中的一条边的值为:这条边连接的两个点的值的异或值。
定义一个无向图的值为:这个无向图所有边的值的和。
给你一个有n个结点m条边的无向图。其中的一些点的值是给定的,而其余的点的值由你决定(但要求均为非负数),使得这个无向图的值最小。在无向图的值最小的前提下,使得无向图中所有点的值的和最小。
 

Input

第一行,两个数n,m,表示图的点数和边数。
接下来n行,每行一个数,按编号给出每个点的值(若为负数则表示这个点的值由你决定,值的绝对值大小不超过10^9)。
接下来m行,每行二个数a,b,表示编号为a与b的两点间连一条边。(保证无重边与自环。)
 

Output

    第一行,一个数,表示无向图的值。
    第二行,一个数,表示无向图中所有点的值的和。
 

Sample Input

3 2
2
-1
0
1 2
2 3

Sample Output

2
2

HINT

数据约定
  n<=500,m<=2000
样例解释
    2结点的值定为0即可。


妙妙妙

【bzoj2400】Spoj 839 Optimal Marks 最小割


#include<cmath>
#include<ctime>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<complex>
#include<iostream>
#include<algorithm>
#include<iomanip>
#include<vector>
#include<string>
#include<bitset>
#include<queue>
#include<map>
#include<set>

using namespace std;

typedef long long ll;

inline int read()
{
	int x=0,f=1;char ch=getchar();
	while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
	while(ch<='9'&&ch>='0'){x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}
	return x*f;
}
void print(int x)
{if(x<0)putchar('-'),x=-x;if(x>=10)print(x/10);putchar(x%10+'0');}

const int N=510,M=2010,inf=0X3f3f3f3f;

int last[N],ecnt,S=N-2,T=N-1;
struct EDGE{int to,nt,val;}e[M<<2];
inline void readd(int u,int v,int val)
{e[++ecnt]=(EDGE){v,last[u],val};last[u]=ecnt;}
inline void add(int u,int v,int val)
{readd(u,v,val);readd(v,u,0);}

int Val[N],U[M],V[M];

namespace flow
{
	void initial()
	{memset(last,0,sizeof(last));ecnt=1;}
	
	int d[N],q[N];
	
	bool bfs()
	{
		memset(d,0,sizeof(d));
		register int i,u,v,head(0),tail(1);
		q[head]=S;d[S]=1;
		while(head<tail)
		{
			u=q[head++];
			for(i=last[u];i;i=e[i].nt)
				if(e[i].val && !d[v=e[i].to])
					q[tail++]=v,d[v]=d[u]+1;
		}
		return d[T];
	}
	
	int dfs(int u,int lim)
	{
		if(!lim || u==T) return lim;
		int res=0;
		for(int i=last[u],v,tmp;i;i=e[i].nt)
			if(e[i].val && d[v=e[i].to]==d[u]+1)
			{
				tmp=dfs(v,min(e[i].val,lim));
				lim-=tmp;res+=tmp;
				e[i].val-=tmp;e[i^1].val+=tmp;
				if(!tmp) d[e[i].to]=-1;
				if(!lim) break;
			}
		return res;
	}
	
	int mxflow;
	int dinic()
	{mxflow=0;while(bfs()) mxflow+=dfs(S,inf);return mxflow;}
}

int main()
{
	int n=read(),m=read();
	register int i,j,tmp;
	for(i=1;i<=n;++i) Val[i]=read();
	for(i=1;i<=m;++i) U[i]=read(),V[i]=read();
	ll ans(0),sum(0);
	for(j=0;j<30;++j)
	{
		flow::initial();
		for(i=1;i<=n;++i)
			if(Val[i]>=0)
				Val[i]&(1<<j) ? (add(S,i,1),add(i,T,inf)) : add(S,i,inf);
			else add(S,i,1);
		for(i=1;i<=m;++i)
			readd(U[i],V[i],10000),
			readd(V[i],U[i],10000);
		tmp=flow::dinic();
		ans+=1ll*tmp/10000*(1<<j);
		sum+=1ll*tmp%10000*(1<<j);
	}
	cout<<ans<<endl<<sum<<endl;
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值