2400: Spoj 839 Optimal Marks
Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 910 Solved: 349
[Submit][Status][Discuss]
Description
定义无向图中的一条边的值为:这条边连接的两个点的值的异或值。
定义一个无向图的值为:这个无向图所有边的值的和。
给你一个有n个结点m条边的无向图。其中的一些点的值是给定的,而其余的点的值由你决定(但要求均为非负数),使得这个无向图的值最小。在无向图的值最小的前提下,使得无向图中所有点的值的和最小。
Input
第一行,两个数n,m,表示图的点数和边数。
接下来n行,每行一个数,按编号给出每个点的值(若为负数则表示这个点的值由你决定,值的绝对值大小不超过10^9)。
接下来m行,每行二个数a,b,表示编号为a与b的两点间连一条边。(保证无重边与自环。)
Output
第一行,一个数,表示无向图的值。
第二行,一个数,表示无向图中所有点的值的和。
Sample Input
3 2
2
-1
0
1 2
2 3
2
-1
0
1 2
2 3
Sample Output
2
2
2
HINT
数据约定
n<=500,m<=2000
样例解释
2结点的值定为0即可。
妙妙妙
【bzoj2400】Spoj 839 Optimal Marks 最小割
#include<cmath>
#include<ctime>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<complex>
#include<iostream>
#include<algorithm>
#include<iomanip>
#include<vector>
#include<string>
#include<bitset>
#include<queue>
#include<map>
#include<set>
using namespace std;
typedef long long ll;
inline int read()
{
int x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch<='9'&&ch>='0'){x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}
return x*f;
}
void print(int x)
{if(x<0)putchar('-'),x=-x;if(x>=10)print(x/10);putchar(x%10+'0');}
const int N=510,M=2010,inf=0X3f3f3f3f;
int last[N],ecnt,S=N-2,T=N-1;
struct EDGE{int to,nt,val;}e[M<<2];
inline void readd(int u,int v,int val)
{e[++ecnt]=(EDGE){v,last[u],val};last[u]=ecnt;}
inline void add(int u,int v,int val)
{readd(u,v,val);readd(v,u,0);}
int Val[N],U[M],V[M];
namespace flow
{
void initial()
{memset(last,0,sizeof(last));ecnt=1;}
int d[N],q[N];
bool bfs()
{
memset(d,0,sizeof(d));
register int i,u,v,head(0),tail(1);
q[head]=S;d[S]=1;
while(head<tail)
{
u=q[head++];
for(i=last[u];i;i=e[i].nt)
if(e[i].val && !d[v=e[i].to])
q[tail++]=v,d[v]=d[u]+1;
}
return d[T];
}
int dfs(int u,int lim)
{
if(!lim || u==T) return lim;
int res=0;
for(int i=last[u],v,tmp;i;i=e[i].nt)
if(e[i].val && d[v=e[i].to]==d[u]+1)
{
tmp=dfs(v,min(e[i].val,lim));
lim-=tmp;res+=tmp;
e[i].val-=tmp;e[i^1].val+=tmp;
if(!tmp) d[e[i].to]=-1;
if(!lim) break;
}
return res;
}
int mxflow;
int dinic()
{mxflow=0;while(bfs()) mxflow+=dfs(S,inf);return mxflow;}
}
int main()
{
int n=read(),m=read();
register int i,j,tmp;
for(i=1;i<=n;++i) Val[i]=read();
for(i=1;i<=m;++i) U[i]=read(),V[i]=read();
ll ans(0),sum(0);
for(j=0;j<30;++j)
{
flow::initial();
for(i=1;i<=n;++i)
if(Val[i]>=0)
Val[i]&(1<<j) ? (add(S,i,1),add(i,T,inf)) : add(S,i,inf);
else add(S,i,1);
for(i=1;i<=m;++i)
readd(U[i],V[i],10000),
readd(V[i],U[i],10000);
tmp=flow::dinic();
ans+=1ll*tmp/10000*(1<<j);
sum+=1ll*tmp%10000*(1<<j);
}
cout<<ans<<endl<<sum<<endl;
return 0;
}