吞吐量对抗一键安装!SGLang/VLLM/Ollama 横评大比拼

徘徊、犹豫-之言:

         在当今 AI 大模型技术蓬勃发展的浪潮中,挑选出一款契合自身需求的推理框架,已然成为开发者们亟待攻克的关键难题。对于企业级应用而言,高并发处理能力是其核心诉求;而个人开发者在本地进行实验时,又有着截然不同的考量标准。本文将全方位剖析 SGLang、VLLM、Ollama 这三大热门框架,从性能表现、易用程度、适用场景等多个关键维度,深入挖掘它们各自的优劣所在,助力你精准锁定最适合自己的“AI 开发利器”!不容错过!

1:SGLang:企业级推理的“性能霸主”,横扫高并发战场!

优点
    1.1:吞吐量狂飙突进:

凭借零开销批处理调度器、缓存感知负载均衡器等前沿技术,SGLang 在吞吐量上一骑绝尘。就拿处理共享前缀的批量请求来说,它能轻松飙到 158,596 token/s 的惊人速度,同时缓存命中率稳稳站在 75% 的高位,简直就是为企业级高并发应用量身打造的“加速引擎”。


  1.2:结构化输出极速狂飙:

基于 xgrammar 的 JSON 解码技术,犹如给解码速度装上了“火箭助推器”,比其他方案快上整整 10 倍。对于那些对输出格式有着严苛要求的场景,比如 API 接口开发,简直就是必备神器,能瞬间输出精准无误的结构化数据。


  1.3:多 GPU 优化火力全开 :

完美支持分布式部署,搭配 DeepSeek 模型的数据并行注意力机制,解码吞吐量瞬间提升 1.9 倍,让多 GPU 资源得到充分利用,进一步释放性能潜力。

缺点
  1.4:上手难度堪比“珠峰”:

需要开发者深入钻研其 API 和复杂的调度机制,更适合那些有着丰富经验的专业团队来驾驭,新手可能会在学习过程中“磕磕绊绊”。


  1.5:系统与硬件“挑剔”:

虽说通过 docker 部署在一定程度上放宽了系统限制,但它本质上还是更偏爱 Linux 系统。而且,它对硬件配置要求极高,必须依赖高性能 GPU(像 A100/H100 这样的“性能怪兽”),否则难以发挥出最佳性能。


  1.6:适用场景“专而精”:

主要适用于那些计算资源充裕的场景,比如企业级的高并发服务,或者是对结构化输出(如 JSON/XML 格式数据)有明确需求的业务领域,其他场景可能就无法充分展现其优势。

2: VLLM:大规模在线服务的“算力智控专家”

优点
  2.1. 内存利用高效卓越 :

凭借 PagedAttention 技术,巧妙地将 KV 缓存进行分割管理,使得显存浪费率被严格控制在 4% 以内,从而能够同时处理更多的请求,极大地提升了资源利用效率。


  2.2 动态批处理灵活高效:

Continuous Batching 技术的运用,打破了传统批处理的局限,允许新请求随时加入正在处理的批次,有效避免了等待延迟的问题,让吞吐量实现了质的飞跃,最高可提升 24 倍(相较于原生 Transformers),显著提高了处理速度和效率。


  2.3. 多量化支持实用性强 :

广泛兼容 GPTQ、AWQ 等多种量化技术,通过这些技术能够显著降低显存占用,特别适合那些资源相对受限的在线服务场景,为在有限资源下实现高效推理提供了有力支持。

缺点
  2.4配置过程较为繁琐 :

需要用户手动进行参数调整,对于新手来说不够友好,可能会在配置过程中遇到一些困难和挑战,需要一定的学习和摸索成本。


  2.5显存占用相对较高 :

尽管在内存管理方面进行了优化,但整体显存需求仍然高于 Ollama,这意味着在硬件资源有限的情况下,可能会受到一定的限制,需要更强大的硬件支持来充分发挥其性能。


  2.6系统与硬件兼容性有限 :

仅支持 Linux 系统,并且依赖于 NVIDIA GPU,这在一定程度上限制了其在不同系统和硬件环境下的适用范围,对于使用其他系统或硬件的用户来说,可能会带来不便。

适用场景:

主要适用于实时聊天机器人、大规模在线推理服务等对实时性和处理效率要求较高的场景,能够为这些场景提供强大的算力支持和高效的推理性能。

3:Ollama:个人开发者专属的“推理神器”

优点
  3.1.一键式安装,畅快体验:

Ollama 提供了跨平台支持(Windows/macOS/Linux),安装过程宛如“丝滑巧克力”,轻松流畅,几分钟内即可完成部署,让开发者迅速进入开发状态。


 3. 2. 海量模型库,创意无限 :

内置 1700+ 模型(如 Llama、Qwen),一键下载运行,轻松满足创意写作、学习辅助等多样化需求,为开发者提供了丰富的“创意弹药库”。


  3. 3.高度可定制,灵活适配 :

通过 Modelfile 调整创造性参数或系统消息,灵活适配不同场景。比如,调高参数就能生成精彩故事,优化系统消息则可用于专业解答,满足各种个性化需求。

缺点
  3.4.并发能力有限 :

在处理高并发请求时,需要手动调整参数,难以满足企业级场景的需求,更适合单机或小规模使用。


  3.5.网络限制问题 :

由于服务器在国外,国内用户下载模型可能会遇到速度缓慢的问题,影响使用体验。

适用场景 :

主要适用于学生、个人开发者的本地实验,以及轻量级应用(如学习助手、创意写作工具),为个人开发者提供了便捷、高效的开发体验。

对比图:

总结:

企业级服务,SGLang 是不二之选:凭借卓越的性能,其吞吐量和结构化输出能力堪称行业翘楚,为企业级应用筑牢根基。

在线高并发场景,VLLM 独占鳌头:凭借动态批处理和先进的内存管理技术,确保服务在高并发压力下依然稳定高效,保障业务流畅运行。

个人开发领域,Ollama 崭露头角:简单易用,跨平台支持搭配丰富的模型库,让创意灵感瞬间触手可及,助力个人开发者快速实现想法。

技术本身并无绝对优劣之分,关键在于是否契合应用场景。无论是对极致性能的不懈追求,还是对便捷体验的青睐有加,唯有精准选择与自身需求高度适配的框架,方能充分激发大模型的强大潜力,让技术真正赋能业务发展。

### SGLangvLLM简介 SGLang是一种高级编程语言和框架,专为优化大型语言模型(LLM)的推理过程而设计[^3]。此工具不仅限于作为简单的推理引擎,还提供了更复杂的抽象层次来简化开发者的操作流程。通过引入类似于编译器前端的概念,SGLang能够更好地处理并行计算任务以及资源管理。 相比之下,vLLM是一个专注于提升大规模预训练模型部署效率的技术方案集合体[^2]。它最初因paged attention机制和支持连续批处理功能而受到广泛关注。这些特性使得vLLM能够在不牺牲精度的前提下显著提高吞吐量,并减少延迟时间。 ### 技术特点对比 #### 性能表现 - **SGLang**: 提供了一种新颖的方法论用于加速神经网络预测阶段的工作负载分配策略;同时支持多种硬件平台间的无缝切换以实现最佳运行效果。 - **vLLM**: 主要依靠内存分页技术和持续批次调度算法改善数据流传输速率及降低CPU-GPU间通信开销,在实际应用环境中表现出优异的成绩。 #### 易用性和灵活性 - **SGLang**: 设计之初就考虑到了易用性的需求,允许开发者编写简洁直观的代码片段来进行复杂逻辑控制。此外,其内置了许多实用函数库帮助快速搭建原型系统或生产环境下的解决方案。 - **vLLM**: 虽然本身并不提供额外的应用构建辅助工具集,但是凭借强大的底层架构可以轻松集成第三方API接口完成特定业务目标设定下的高效运作模式配置工作。 ### 应用场景分析 对于那些希望获得更高程度自动化水平并且追求极致性能体验的研究人员来说,SGLang无疑是最合适的选择之一。而对于已经具备一定技术积累的企业级客户而言,则可能更加倾向于采用成熟稳定的vLLM产品线来满足日常运营中的各种挑战性要求。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值