尝试从数学的角度分析三国杀国战的胜率

本文探讨了《三国杀Online》中玩家胜率的数学分析,重点在于单局游戏胜率的计算,以及有限武将池对胜率分布的影响。通过实例和实际数据对比,揭示了选将偏好的对胜率提升的作用,挑战了传统胜率评价标准。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

2008年,桌游《三国杀》横空出世,火遍大江南北,短时间内就成为了中国最受欢迎的桌面游戏之一。2012年《三国杀国战》发售,不同于传统身份玩法,国战的阵营组合更加丰富,双将的玩法也让游戏的可玩性再次得到大大提升。新元素的加入使得国战的难度大大高于传统身份局,玩家不仅需要掌握正确的牌序,还需要时刻保持良好的大局观。
官方网络游戏《三国杀Online》是广大三国杀玩家除线下游戏以外的不二选择。由于游戏中没有国战的天梯系统,因此胜率成为了评判玩家游戏实力的一个决定性的标准。一个较为普遍的经验是,胜率超过大约36%的玩家可以说是实力较为优秀,而胜率超过39%~40%的玩家则可以说是实力出类拔萃。
一名玩家的胜率到底如何反映出他的水平?本文尝试从数学的角度对此作出分析。
(注意:最近《三国杀Online》中新加入了晋势力武将,本文不对该势力加以考虑)

单局游戏的胜率

要研究一名玩家的总胜率,我们首先关心的当然就是单局游戏的胜率。事实上,知乎上已经有答主对单局游戏的胜率进行过计算,结果是32.72%。知乎网址
注意到在该答主的计算中,假设了武将池是无限的,即一名玩家所选的将不会影响到其他玩家选将的概率。笔者认为这是不合理的,因为国战拓展包较少,在《三国杀Online》的当前版本中,只有83个武将,再加上国战双将机制,使得将池的有限性进一步加大。因此本文将将池看做有限,并再次对国战胜率期望进行计算。


为了计算的简便,我们假设将池中共有80名武将,并假设所有玩家水平相同,选将无任何偏好(比如无脑选魏)。由于国战的双将制对我们计算胜率期望没有影响,因此我们不妨假设将池中共有40名武将,其中魏蜀吴群各10个,每局游戏每名玩家只选一名武将。
由以上假设我们可以知道,一名玩家进行了本局游戏最后一次击杀的概率是 1 8 \frac{1}{8} 81,因此一个势力有n名玩家, 那么该势力在本局游戏中的胜率就是 n 8 \frac{n}{8} 8n
一局游戏中,设 P i ( i = 0 , 1 , . . . , 7 ) P_i(i=0,1,...,7) Pi(i=0,1,...,7)是与自己同势力的玩家(不包括自己)有 i i i个的概率,这里我们先不考虑野心家机制。由于每个玩家选择武将是独立的,因此我们可以得到公式 P i = C 9 i C 30 7 − i C 39 7 P_i = \frac{C^i_9C^{7-i}_{30}}{C^7_{39}} Pi=C397C9iC307i
i ≤ 3 i\leq3 i3时,自己获胜的概率就是 i + 1 8 P i \frac{i+1}{8}P_i 8i+1Pi
而当 i ≥ 4 i\geq4 i4时,由于野心家机制,自己有 i − 3 i + 1 \frac{i-3}{i+1} i+1i3的概率成为野心家,因此自己获胜的概率就是 ( 1 8 i − 3 i + 1 + 4 8 4 i + 1 ) P i (\frac{1}{8}\frac{i-3}{i+1}+\frac{4}{8}\frac{4}{i+1})P_i (81i+1i3+84i+14)Pi
由此,我们可以得到胜率 = ∑ i = 0 3 i + 1 8 P i + ∑ i = 4 7 ( 1 8 i − 3 i + 1 + 4 8 4 i + 1 ) P i = 31.88 % =\sum_{i=0}^3\frac{i+1}{8}P_i+\sum_{i=4}^7(\frac{1}{8}\frac{i-3}{i+1}+\frac{4}{8}\frac{4}{i+1})P_i=31.88\% =i=038i+1Pi+i=47(81i+1i3+84i+14)Pi=31.88%
这个结果比知乎答主计算的结果低了将近一个百分点,这是合理的,因为将池有限限制了单阵营多将的概率,而单阵营多将的胜率更高,所以考虑将池有限之后,胜率是会降低的。

胜率的分布

在研究了单局游戏的胜率之后,我们自然希望研究一名玩家的总胜率是如何分布的,由此我们就能知道某个胜率的玩家的水平究竟如何。不考虑玩家心态等因素的情况下,一名玩家的两局游戏之间是没有任何关联的,那么一名玩家进行了n局游戏后,他的总胜率服从二项分布 B ( n , P ) B(n,P) B(n,P)。当n=1000时,总胜率的概率密度曲线如下:总胜率的概率密度曲线
二项分布的性质保证了峰值所对应的胜率为0.319,这也是总胜率的数学期望。下图给出了总胜率的分布函数:
总胜率的分布函数
由图可以看出,假设所有玩家的总胜率都服从这个分布,那么玩家胜率在36.5%以上的概率只有0.1%,这显然和文章开头所说的普遍经验是相悖的。问题出在了哪里?我们进入下一节。

实际数据

为了研究实际游戏中玩家总胜率的分布,笔者在游戏中随机抽取了400名玩家的胜率(随机观战),绘成了一副柱状图:

游戏内抽样调查
样本近似服从正态分布(中心极限定理保证了这是合理的)。然而,样本的均值高达34.8%,这与我们计算出来的31.9%有很大的差距。笔者认为,这是由于玩家之中普遍存在选将偏好导致的。例如,在鏖战版本以前,魏国武将强度很高,玩家倾向于选魏国;而鏖战版本后,玩家对吴国的喜好也日渐上升。这一偏好可以通过调整选择各个势力的概率来量化,相关计算较为复杂,这里不深入讨论。但是从定性的角度来说,当玩家普遍存在选将偏好时,单阵营多将的概率将提高,而此时胜率最高,因此选将偏好会导致总体胜率偏高。
P = 34.8 % P=34.8\% P=34.8%后,我们再次研究二项分布 B ( n , P ) B(n,P) B(n,P),分布函数如下:分布函数2
由图可知,胜率在36.7%以上的玩家只有大约10%,而在39.5%以上的玩家只有0.1%。但事实上,在上述样本所产生的分布函数中,对应90%概率的胜率为38.6%,而且39.5%胜率只对应94%的概率,这与笔者所构造的模型仍有一些出入。实际情况下,玩家胜率满足的正态分布的标准差要比模型中的要大,笔者分析可能是因为低胜率玩家退游率较高,导致玩家胜率分布倾向于偏态分布,从而导致高胜率人数比理想状态下要更多。

(如果你有更好的想法,欢迎与我交流)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值