序
2008年,桌游《三国杀》横空出世,火遍大江南北,短时间内就成为了中国最受欢迎的桌面游戏之一。2012年《三国杀国战》发售,不同于传统身份玩法,国战的阵营组合更加丰富,双将的玩法也让游戏的可玩性再次得到大大提升。新元素的加入使得国战的难度大大高于传统身份局,玩家不仅需要掌握正确的牌序,还需要时刻保持良好的大局观。
官方网络游戏《三国杀Online》是广大三国杀玩家除线下游戏以外的不二选择。由于游戏中没有国战的天梯系统,因此胜率成为了评判玩家游戏实力的一个决定性的标准。一个较为普遍的经验是,胜率超过大约36%的玩家可以说是实力较为优秀,而胜率超过39%~40%的玩家则可以说是实力出类拔萃。
一名玩家的胜率到底如何反映出他的水平?本文尝试从数学的角度对此作出分析。
(注意:最近《三国杀Online》中新加入了晋势力武将,本文不对该势力加以考虑)
单局游戏的胜率
要研究一名玩家的总胜率,我们首先关心的当然就是单局游戏的胜率。事实上,知乎上已经有答主对单局游戏的胜率进行过计算,结果是32.72%。知乎网址
注意到在该答主的计算中,假设了武将池是无限的,即一名玩家所选的将不会影响到其他玩家选将的概率。笔者认为这是不合理的,因为国战拓展包较少,在《三国杀Online》的当前版本中,只有83个武将,再加上国战双将机制,使得将池的有限性进一步加大。因此本文将将池看做有限,并再次对国战胜率期望进行计算。
为了计算的简便,我们假设将池中共有80名武将,并假设所有玩家水平相同,选将无任何偏好(比如无脑选魏)。由于国战的双将制对我们计算胜率期望没有影响,因此我们不妨假设将池中共有40名武将,其中魏蜀吴群各10个,每局游戏每名玩家只选一名武将。
由以上假设我们可以知道,一名玩家进行了本局游戏最后一次击杀的概率是
1
8
\frac{1}{8}
81,因此一个势力有n名玩家, 那么该势力在本局游戏中的胜率就是
n
8
\frac{n}{8}
8n。
一局游戏中,设
P
i
(
i
=
0
,
1
,
.
.
.
,
7
)
P_i(i=0,1,...,7)
Pi(i=0,1,...,7)是与自己同势力的玩家(不包括自己)有
i
i
i个的概率,这里我们先不考虑野心家机制。由于每个玩家选择武将是独立的,因此我们可以得到公式
P
i
=
C
9
i
C
30
7
−
i
C
39
7
P_i = \frac{C^i_9C^{7-i}_{30}}{C^7_{39}}
Pi=C397C9iC307−i。
当
i
≤
3
i\leq3
i≤3时,自己获胜的概率就是
i
+
1
8
P
i
\frac{i+1}{8}P_i
8i+1Pi;
而当
i
≥
4
i\geq4
i≥4时,由于野心家机制,自己有
i
−
3
i
+
1
\frac{i-3}{i+1}
i+1i−3的概率成为野心家,因此自己获胜的概率就是
(
1
8
i
−
3
i
+
1
+
4
8
4
i
+
1
)
P
i
(\frac{1}{8}\frac{i-3}{i+1}+\frac{4}{8}\frac{4}{i+1})P_i
(81i+1i−3+84i+14)Pi。
由此,我们可以得到胜率
=
∑
i
=
0
3
i
+
1
8
P
i
+
∑
i
=
4
7
(
1
8
i
−
3
i
+
1
+
4
8
4
i
+
1
)
P
i
=
31.88
%
=\sum_{i=0}^3\frac{i+1}{8}P_i+\sum_{i=4}^7(\frac{1}{8}\frac{i-3}{i+1}+\frac{4}{8}\frac{4}{i+1})P_i=31.88\%
=i=0∑38i+1Pi+i=4∑7(81i+1i−3+84i+14)Pi=31.88%
这个结果比知乎答主计算的结果低了将近一个百分点,这是合理的,因为将池有限限制了单阵营多将的概率,而单阵营多将的胜率更高,所以考虑将池有限之后,胜率是会降低的。
胜率的分布
在研究了单局游戏的胜率之后,我们自然希望研究一名玩家的总胜率是如何分布的,由此我们就能知道某个胜率的玩家的水平究竟如何。不考虑玩家心态等因素的情况下,一名玩家的两局游戏之间是没有任何关联的,那么一名玩家进行了n局游戏后,他的总胜率服从二项分布
B
(
n
,
P
)
B(n,P)
B(n,P)。当n=1000时,总胜率的概率密度曲线如下:
二项分布的性质保证了峰值所对应的胜率为0.319,这也是总胜率的数学期望。下图给出了总胜率的分布函数:
由图可以看出,假设所有玩家的总胜率都服从这个分布,那么玩家胜率在36.5%以上的概率只有0.1%,这显然和文章开头所说的普遍经验是相悖的。问题出在了哪里?我们进入下一节。
实际数据
为了研究实际游戏中玩家总胜率的分布,笔者在游戏中随机抽取了400名玩家的胜率(随机观战),绘成了一副柱状图:
样本近似服从正态分布(中心极限定理保证了这是合理的)。然而,样本的均值高达34.8%,这与我们计算出来的31.9%有很大的差距。笔者认为,这是由于玩家之中普遍存在选将偏好导致的。例如,在鏖战版本以前,魏国武将强度很高,玩家倾向于选魏国;而鏖战版本后,玩家对吴国的喜好也日渐上升。这一偏好可以通过调整选择各个势力的概率来量化,相关计算较为复杂,这里不深入讨论。但是从定性的角度来说,当玩家普遍存在选将偏好时,单阵营多将的概率将提高,而此时胜率最高,因此选将偏好会导致总体胜率偏高。
令
P
=
34.8
%
P=34.8\%
P=34.8%后,我们再次研究二项分布
B
(
n
,
P
)
B(n,P)
B(n,P),分布函数如下:
由图可知,胜率在36.7%以上的玩家只有大约10%,而在39.5%以上的玩家只有0.1%。但事实上,在上述样本所产生的分布函数中,对应90%概率的胜率为38.6%,而且39.5%胜率只对应94%的概率,这与笔者所构造的模型仍有一些出入。实际情况下,玩家胜率满足的正态分布的标准差要比模型中的要大,笔者分析可能是因为低胜率玩家退游率较高,导致玩家胜率分布倾向于偏态分布,从而导致高胜率人数比理想状态下要更多。
(如果你有更好的想法,欢迎与我交流)