文章目录
引言
- 今天早上起的刚好,挺早的,书也背了,继续开始复习。动态规划的章节继续完成。
复习
单调队列优化——最大子序列和
思路分析
- 这个题目是在长度为n的整数序列,找出长度不超过m的连续子序列,最直白的做法就是的枚举起点,然后在遍历终点。现在转换为找在范围m内移动坐标点,使得该坐标点的累加和最小,为了一个单调递增队列实现。
下面分析,知道问题转换部分都是确定的,但是后续部分就有点不确定了,参考一下就行,感觉有点硬往单调队列上车扯
实现代码
#include <iostream>
using namespace std;
const int N = 300010,M = 300010;
int s[N],q[N];
int n,m; // n是队列元素个数,m是维系的m个队列
int main(){
cin>>n>>m;
// 维系累加和队列
for (int i = 1; i <= n; ++i) {
cin>>s[i];
s[i] += s[i - 1];
}
// 计算单调最优队列
int res = INT_MIN;
int l = 0,r = 0;
for (int i = 1; i <= n; ++i) {
// 判定队列是否超过了当前的边界只
if (l <= i && i - q[l] > m) l ++;
res = max(res,s[i] - s[q[l]]);
// 更新最右端队列的边界值
// 右指针移动的时候,是如何进行比较的
int t = q[r] + 1;
// 保证队列的右指针始终在左指针旁边
while (r >= l && s[q[r]] > s[t]) r--;
q[++r] = t;
}
cout<<res;
}
问题
- 在实现中,不知道单调递增队列应该如何和右指针进行比较,所以迭代的细节不是很清楚。我以为的迭代过程是在i-m到i之内,结果不对,或者说过程不对,如果抛开的m这个边界不说,那就是直接找s[i]的最小值的,也就是的往后遍历即可。
- 我这里是遍历到的q[r]右边的一个元素,和那个差不多。因为在i不断增加的过程中,实际上,就已经控制了边界,每一次都是遍历到i,那么在i为i-1的时候,其实就已经遍历过对应的值了。
参考实现
#include <iostream>
#include <limits.h>
using namespace std;
typedef long long LL;
const int N = 300010;
int q[N],s[N];
int n,m;
int main(){
cin>>n>>m;
for (int i = 1; i <= n ; ++i) {
cin>>s[i];
s[i] += s[i - 1];
}
// 创建对应的队列
int hh = 0,tt = 0,res = INT_MIN;
q[hh] = 0;
for (int i = 1; i <= n; ++i) {
// 保证队列的长度不变
if (i - q[hh] > m) hh++;
// 计算最值
res = max