论文笔记:MICCAI2018 Cell Detection with Star-convex Polygons

本文探讨了在图像中检测非常拥挤细胞核的挑战,指出传统的像素分类方法容易导致实例融合。为此,提出了一种结合形状表示的方法,预测每个像素点的星形凸多边形距离和对象概率,以更精确地定位和分割细胞核。损失函数包括二进制交叉熵损失和加权平均绝对误差损失。这种方法尤其适用于细胞核的实时检测,能有效避免边界模糊的问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Motivation:

especially appealing for images of very crowded cells

bottom-up approach

to first classify every pixel into semantic classes (such as cell or background) and then group pixels of the same class into individual instances.

每个像素分类为语义类,然后将同一类的像素分组为单个实例。

problematic for images of very crowded cell nuclei, since only a few mis-classified pixels can cause bordering but distinct cell instances to be fused.

对于非常拥挤的细胞核图像来说,这是一个问题,因为只有少数分类错误的像素会导致接近但不同的细胞实例融合

top-down approach

first localize individual cell instances with a rough shape representation and then refine the shape in an additional step

首先使用粗略的形状表示本地化单个单元实例,然后在附加步骤中优化形状

NMS can be problematic if the objects of interest are poorly represented by their axis-aligned bounding boxes. While this can be mitigated by using rotated bounding boxes [10], it is still necessary to refine the box shape to accurately describe objects such as cell nuclei.

如果感兴趣的对象不能很好地用轴对齐的边界框表示,NMS可能会出现问题。虽然这可以通过使用旋转的边界框来缓解[10],但仍有必要细化框的形状,以准确描述诸如细胞核之类的对象。

Method:

针对the single object class cell nuclei,predicts a shape representation

图像中每个点(i,j),分别回归star-convex polygon distances(k)和object probabilities(d).

object probabilities (d_(i,j)): 点(i,j) 的euclidean distance to the nearest background pixel。每个点一个距离

star-convex polygon distances (k_(i,j)):属于同一个物体类别的点(i,j)沿radial direction到物体边界的最远距离。每个点有k个距离

loss:

For the predicted object probabilities, binary cross-entropy loss

For the polygon distances, mean absolute error loss weighted by the ground truth object probabilities

关于star-convex polygon distances与radital detection: 

在CVPR2017 Straight to Shapes: Real-time Detection of Encoded Shapes中引入,但不适合,如下图。但是这种形状表征很适合细胞。

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值