1.Introduction:
Motivation:adaptive hierarchical dual consistency overcomes the difference of data distribution and sample mismatch in different domains for the cross-domain semi-supervised segmentation。
(1)跨域数据分布的差异。使用生成模型、低密度分离和基于图的方法的半监督学习可以工作,但依赖于某些模型假设下的一致数据分布,包括平滑假设、聚类假设或流形假设。每当为特定任务采用的假设与数据分布的特征不匹配时,半监督模型的性能就会下降。在现实世界中,从不同来源收集的跨域数据表现出异构属性 ,这可能导致分布的差异。例如,在医学图像分析中,由于不同的主题组、扫描仪或扫描协议,跨域数据的分布是不同的。因此,将半监督学习直接推广到跨域数据并非易事。
(2) 跨域数据样本不匹配。基于分歧的方法的半监督学习需要来自不同领域的匹配样本,其中不同领域的信息被视为匹配样本的不同特征。由于跨域数据的采集是独立的,不同域的样本是不匹配的。这限制了半监督学习的跨域泛化。
本文提出了一个半监督的 LA 分割框架,用于跨域泛化。 它提供了一种将半监督 LA 分割推广到跨域数据的解决方案,在不同分布和不匹配样本上均有效。提出了一种分层双重一致性学习范式来挖掘域间和域内的有效信息。 它在补充信息下明确强制执行一致性。
对来自不同中心的四个 3D MR 数据集和一个 3D CT 数据集进行了综合实验。 实验结果证明了我们提出的跨域半监督分割框架的可行性和优越性。
2.Method:
数学推导!!,但代码不全??
文章思路很清晰,分为如下两部分:
(1)Bidirectional Adversarial Inference for Distribution Alignment and Sample Matching
(2)Hierarchical Dual Consistency for Semi-Supervised Segmentation
先利用BAI,如下,进行分布和形状匹配。得到分布相似的图。存在的问题:随机变量 x1 和 x2 之间的关系不受方程(1)的指定或约束。 为了获得成对样本,根据[26],我们将条件熵从单一约束扩展到双向约束(H(x1|x2) 和 H(x2|x1)),这对条件 pφ1( x2|x1) 和 qφ2(x1|x2),同时进行。
HDC中,每个源用两个网络(NN+atten 、NN+conv),分别代表全局和局部网络。两个源有四个。有标签的直接计算两个输出与标签的loss;无标签数据计算其inter和intra的对比loss。再加一个希望两对网络不相似的参数loss。希望产生独立的特征。