论文笔记:TMI2021 Adaptive Hierarchical Dual Consistency for Semi-Supervised Left Atrium Segmentationon

1.Introduction:

Motivation:adaptive hierarchical dual consistency overcomes the difference of data distribution and sample mismatch in different domains for the cross-domain semi-supervised segmentation。

(1)跨域数据分布的差异。使用生成模型、低密度分离和基于图的方法的半监督学习可以工作,但依赖于某些模型假设下的一致数据分布,包括平滑假设、聚类假设或流形假设。每当为特定任务采用的假设与数据分布的特征不匹配时,半监督模型的性能就会下降。在现实世界中,从不同来源收集的跨域数据表现出异构属性 ,这可能导致分布的差异。例如,在医学图像分析中,由于不同的主题组、扫描仪或扫描协议,跨域数据的分布是不同的。因此,将半监督学习直接推广到跨域数据并非易事。

(2) 跨域数据样本不匹配。基于分歧的方法的半监督学习需要来自不同领域的匹配样本,其中不同领域的信息被视为匹配样本的不同特征。由于跨域数据的采集是独立的,不同域的样本是不匹配的。这限制了半监督学习的跨域泛化。

本文提出了一个半监督的 LA 分割框架,用于跨域泛化。 它提供了一种将半监督 LA 分割推广到跨域数据的解决方案,在不同分布和不匹配样本上均有效。提出了一种分层双重一致性学习范式挖掘域间和域内的有效信息。 它在补充信息下明确强制执行一致性。

对来自不同中心的四个 3D MR 数据集和一个 3D CT 数据集进行了综合实验。 实验结果证明了我们提出的跨域半监督分割框架的可行性和优越性。

2.Method:

数学推导!!,但代码不全??

文章思路很清晰,分为如下两部分:

(1)Bidirectional Adversarial Inference for Distribution Alignment and Sample Matching

(2)Hierarchical Dual Consistency for Semi-Supervised Segmentation

先利用BAI,如下,进行分布和形状匹配。得到分布相似的图。存在的问题:随机变量 x1 和 x2 之间的关系不受方程(1)的指定或约束。 为了获得成对样本,根据[26],我们将条件熵从单一约束扩展到双向约束(H(x1|x2) 和 H(x2|x1)),这对条件 pφ1( x2|x1) 和 qφ2(x1|x2),同时进行。

HDC中,每个源用两个网络(NN+atten 、NN+conv),分别代表全局和局部网络。两个源有四个。有标签的直接计算两个输出与标签的loss;无标签数据计算其inter和intra的对比loss。再加一个希望两对网络不相似的参数loss。希望产生独立的特征。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值