机器学习算法(一)

一、线性回归

给定一组数据 ( x i , y i ) (x_{i},y_{i}) (xi,yi) y i y_{i} yi是连续的,用线性模型 y ^ i = h θ ( x i ) = θ T x i \hat{y}_{i}=h_{\theta}(x_{i})=\theta^{T}x_{i} y^i=hθ(xi)=θTxi,估计值 y ^ i \hat{y}_{i} y^i与实际值 y i y_{i} yi间存在误差 ε i \varepsilon_{i} εi,即
y i = θ T x i + ε i ( 1 ) y_{i}=\theta^{T}x_{i}+\varepsilon_{i}(1) yi=θTxi+εi(1).
误差 ε i \varepsilon_{i} εi属于独立同分布的,根据大数定理, ε i ∼ μ ( 0 , σ 2 ) \varepsilon_{i} \sim\mu(0,\sigma^{2}) εiμ(0,σ2),则有:
p ( ε i ) = 1 2 π e − ε i 2 σ 2 ( 2 ) p(\varepsilon_{i} ) = \frac{1}{\sqrt{2\pi}}e^{-\frac{\varepsilon_{i}^{2}}{\sigma^{2}}}(2) p(εi)=2π 1eσ2εi2(2)
ε i = y i − θ T x i \varepsilon_{i}=y_{i}-\theta^{T}x_{i} εi=yiθTxi带入(2)式有,
p ( y i ∣ x i , θ ) = 1 2 π e − ( y i − θ T x i ) 2 σ 2 ( 3 ) p(y_{i}|x_{i},\theta ) =\frac{1}{\sqrt{2\pi}}e^{-\frac{(y_{i}-\theta^{T}x_{i})^{2}}{\sigma^{2}}} (3) p(yixi,θ)=2π 1eσ2(yiθTxi)2(3)
转成了 x i , θ x_{i},\theta xi,θ已知的情况下, y i y_{i} yi发生的概率。
最大似然函数为
L ( θ ) = Π i = 1 m p ( y i ∣ x i , θ ) ( 4 ) L(\theta)=\Pi_{i=1}^{m}p(y_{i}|x_{i},\theta )(4) L(θ)=Πi=1mp(yixi,θ)(4)
将(3)式带入(4)中,然后取对数,最后得到
J ( θ ) = 1 2 Σ i = 1 m ( h θ ( x i ) − y i ) 2 = 1 2 ( θ T X − Y ) T ( θ T X − Y ) J(\theta)=\frac{1}{2}\Sigma_{i=1}^{m}(h_{\theta}(x_{i})-y_{i})^{2}=\frac{1}{2}(\theta^{T}X-Y)^{T}(\theta^{T}X-Y) J(θ)=21Σi=1m(hθ(xi)yi)2=21(θTXY)T(θTXY)
通过最小二乘法,求出参数 θ \theta θ

方法二:最小均方误差(整体误差的平方和最小,几何方法)
c o s t ( θ ) = m i n 1 2 Σ i = 1 m ( h θ ( x i ) − y i ) 2 ( 5 ) = m i n 1 2 ( θ T X − Y ) T ( θ T X − Y ) cost(\theta)=min{\frac{1}{2}\Sigma_{i=1}^{m}(h_{\theta}(x_{i})-y_{i})^{2}} (5)=min{\frac{1}{2}(\theta^{T}X-Y)^{T}(\theta^{T}X-Y)} cost(θ)=min21Σi=1m(hθ(xi)yi)2(5)=min21(θTXY)T(θTXY)
为了求(5)式的最小值,由于 c o s t ( θ ) > = 0 cost(\theta)>=0 cost(θ)>=0,对 θ \theta θ求导,导数为0的点记为参数 θ \theta θ的值,即可得出线性模型 y ^ i = h θ ( x i ) = θ T x i \hat{y}_{i}=h_{\theta}(x_{i})=\theta^{T}x_{i} y^i=hθ(xi)=θTxi

在这里插入图片描述
在这里插入图片描述
X T X X^{T}X XTX中加入了 λ \lambda λ后,带入 J ( θ ) J(\theta) J(θ)中,
在这里插入图片描述

在这里插入图片描述

逻辑斯谛回归

假设数据服从二项分布,得到数据分布律: p ( y ∣ x ; θ ) = ( h θ ( x i ) y i ( 1 − h θ ( x i ) ) 1 − y i p(y|x;\theta) = (h_{\theta}(x_{i})^{y_{i}}(1-h_{\theta}(x_{i}))^{1-y_{i}} p(yx;θ)=(hθ(xi)yi(1hθ(xi))1yi
通过求逻辑斯谛回归的最大似然,求解模型的参数 θ \theta θ.解析法求解参数比较难,用梯度下降法求解
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

二、通过交叉验证选取超参数

三、梯度下降算法

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值