机器学习算法 1

本文介绍了机器学习中的三种基础算法:K最近邻(KNN),包括K值选择和距离度量;广义线性模型,如LinearRegression, Ridge和Lasso,探讨了它们的存在缘由、原理和调参;以及朴素贝叶斯,包括贝努力、高斯和多项式朴素贝叶斯,并分析了与逻辑回归的区别及优缺点。" 126939885,13513511,RabbitMQ详解与实战,"['消息队列', 'rabbitmq', 'java-rabbitmq', '中间件']
摘要由CSDN通过智能技术生成

一、K最近邻

1.调用函数—

from sklearn.neighbors import KNeighborsClassifier
clf=KNeighborsRegressor(n_neighbors=2)
clf.fit(x,y)

在这里插入图片描述
在这里插入图片描述
KNN的特殊情况是k =1 的情况,称为最近邻算法。对输入的实例点(特征向量)x ,最近邻法将训练数据集中与x 最近邻点的类作为其类别。

(1)一般k 会取一个较小的值,然后用过交叉验证来确定;

(2)距离度量:一般是欧式距离(二范数),或者曼哈顿距离(一范数)

(3)回归问题:取K个最近样本的平均,或者使用加权平均。

算法的优点:(1)思想简单,理论成熟,既可以用来做分类也可以用来做回归;(2)可用于非线性分类;(3)训练时间复杂度为O(n);(4)准确度高,对数据没有假设,对outlier不敏感

缺点:计算量大;样本不平衡问题(即有些类别的样本数量很多,而其它样本的数量很少);需要大量的内存;

需要考虑问题:
  (1)KNN的计算成本很高;
  (2)所有特征应该标准化数量级,否则数量级大的特征在计算距离上会有偏移; (3)在进行KNN前预处理数据,例如去除异常值,噪音等。

KD树是一个二叉树,表示对K维空间的一个划分,可以进行快速检索&#x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值