1 视觉感知要素
1.人眼的构造
1.1 椎状体和杆状体:
椎状体主要位于视网膜中间部分,称之为中央凹,且对颜色灵敏度很高。椎体视觉叫做白昼视觉或亮光视觉。
杆状体数目更多,分布在视网膜表面。它们没有彩色视觉,在低照明下对图像较敏感,被称为夜视觉或暗视觉。
1.2 亮度适应和鉴别
- 实验数据指出,主观亮度(即由人的视觉系统感觉到的亮度)是进入眼睛的光强度的对数函数。
- 韦伯率( ΔIc/I) 实验表明,在低的照明级别,亮度辨别较差(韦伯比大),当背景照明增加时亮度辨别得到改善(韦伯比降低)。
1.3 人类感知现象
- 例子1:感觉亮度不是简单的强度函数(马赫带效应、同时对比度效应)。
- 例子2:视觉错觉
2.光和电磁波谱
- 电磁波谱的可见波段大约占据430 nm (紫色)~790 nm (红色)的范围。
- 人从一个物体感受到的颜色由物体反射光的性质决定
- 在原理上,如果可以开发出一种传感器,它可检测由一种电磁波谱发射的能量,就可以在那一段波上对感兴趣的事件成像。
3.图像感知和获取
- 我们感兴趣的各类图像都是有“照射”源和形成图像的“|场景”元素对光源的反射或吸收相结合而产生的。
- 简单的图像形成模型
用 f(x,y) 二维函数形式表示图像,可由两个分量来表征:(1)入射到观察场的光源总量和;(2)场景中物体反射光的总量
f(x,y)=i(x,y)r(x,y)
上式中反射分量限制在0(全吸收)和1(全反射)之间。 i(x,y) 的性质取决于照射源,而$r(x,y)取决于成像物体的特性。
4.图像取样和量化
4.1 取样和量化的基本概念
- 为了产生一幅数字图像,需要把连续的感知数据转换为数字形式。这包括两种处理:取样和量化。
数字化坐标值称为取样,数字化幅度值称为量化。
4.2 数字图像表示
- 有时灰度级取值范围称为图像的动态范围。把占有灰度级全部有效段的图像叫做高动态范围图像。
4.3 空间和灰度级分辨率
- 空间分辨率是图像中可辨别的最小细节,灰度级分辨率是指在灰度级别中可分离的最小变化。
4.4 放大和收缩数字图像
- 放大要求执行两步操作:创立新的像素值和对这些新位置赋灰度值。常用的灰度赋值法有最近邻域内插、双线性内插等。
4.5 像素间的一些基本关系
- 相邻像素
- 邻接性、连通性、区域和边界
确定两个像素是否连通,必须确定它们是否相邻及它们的灰度值是否满足特定的相似性准则。有三种类型的邻接性:4邻接;8邻接;m邻接(混合邻接,混合邻接的引入是为了消除采用8邻接常常发生的二义性) - 距离度量
像素p和q间的欧式距离(圆形区域):
Dr(p,q)=[(x−s)2+(y−t)2]12]
p和q之间的距离 D4 (也叫城市街区距离,菱形区域):
D4(p,q)=|x−s|+|y−t|
p和q间的 D8 距离(也叫棋盘距离,方形区域):
D8(p,q)=max(|x−s|,|y−t|)
4.6 线性和非线性操作
- 如果对于任何两幅图像
f
和
g 及任何两个标量a和b有如下关系,则称 H 为线性算子:
H(af+bg)=aH(f)+bH(g)