非极大值抑制算法(NMS)及python实现

在目标检测中,常会利用非极大值抑制算法(NMS)对生成的大量候选框进行后处理,去除冗余的候选框,得到最具代表性的结果,以加快目标检测的效率。即如下图所示,消除多余的候选框,找到最佳的bbox。
这里写图片描述

NMS算法过程

根据候选框的类别分类概率做排序: A &lt; B &lt; C &lt; D &lt; E &lt; F A&lt;B&lt;C&lt;D&lt;E&lt;F A<B<C<D<E<F

  1. 先标记最大概率矩形框F是我们要保留下来的;
  2. 从最大概率矩形框F开始,分别判断A~E与F的重叠度IOU(两框的交并比)是否大于某个设定的阈值,假设B、D与F的重叠度超过阈值,那么就扔掉B、D;
  3. 从剩下的矩形框A、C、E中,选择概率最大的E,标记为要保留下来的,然后判读E与A、C的重叠度,扔掉重叠度超过设定阈值的矩形框

就这样一直重复下去,直到剩下的矩形框没有了,标记完所有要保留下来的矩形框

NMS算法的python实现

# python3
import numpy as np

def py_nms(dets, thresh):
    """Pure Python NMS baseline."""
    #x1、y1、x2、y2、以及score赋值
    x1 = dets[:, 0]
    y1 = dets[:, 1]
    x2 = dets[:, 2]
    y2 = dets[:, 3]
    scores = dets[:, 4]

    #每一个候选框的面积
    areas = (x2 - x1 + 1) * (y2 - y1 + 1)
    #order是按照score降序排序的
    order = scores.argsort()[::-1]

    keep = []
    while order.size > 0:
        i = order[0]
        keep.append(i)
        #计算当前概率最大矩形框与其他矩形框的相交框的坐标,会用到numpy的broadcast机制,得到的是向量
        xx1 = np.maximum(x1[i], x1[order[1:]])
        yy1 = np.maximum(y1[i], y1[order[1:]])
        xx2 = np.minimum(x2[i], x2[order[1:]])
        yy2 = np.minimum(y2[i], y2[order[1:]])

        #计算相交框的面积,注意矩形框不相交时w或h算出来会是负数,用0代替
        w = np.maximum(0.0, xx2 - xx1 + 1)
        h = np.maximum(0.0, yy2 - yy1 + 1)
        inter = w * h
        #计算重叠度IOU:重叠面积/(面积1+面积2-重叠面积)
        ovr = inter / (areas[i] + areas[order[1:]] - inter)

        #找到重叠度不高于阈值的矩形框索引
        inds = np.where(ovr <= thresh)[0]
        #将order序列更新,由于前面得到的矩形框索引要比矩形框在原order序列中的索引小1,所以要把这个1加回来
        order = order[inds + 1]
    return keep

# test
if __name__ == "__main__":
    dets = np.array([[30, 20, 230, 200, 1], 
                     [50, 50, 260, 220, 0.9],
                     [210, 30, 420, 5, 0.8],
                     [430, 280, 460, 360, 0.7]])
    thresh = 0.35
    keep_dets = py_nms(dets, thresh)
    print(keep_dets)
    print(dets[keep_dets])

测试结果:
在这里插入图片描述
只有第2个框与第1个框的IoU(0.38)超过了阈值,从结果看其被成功滤除掉了。NMS的大致原理和代码实现大致就是这样~

参考资料:

  1. 目标检测的几个名词
  2. faster rcnn 源码解读
已标记关键词 清除标记
相关推荐
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页