线性代数——矩阵乘积的代码实现

这篇博客探讨了如何根据线性代数中的矩阵乘积知识,创作并实现了一段计算两个矩阵乘积的代码。作者强调了活学活用的重要性,试图将线性代数与计算机知识相结合,构建优化的知识体系。博客提供了输入输出示例,帮助读者理解代码功能。
摘要由CSDN通过智能技术生成

think:
1根据线性代数矩阵乘积部分的知识点,自己创作了自己的第一道题目,虽然并不真正能够作为一道测试题目使用,但对自己来说却拥有重要的意义,而且自己可以通过这样的方法途径优化建立自己的新的知识体系,热爱计算机,以兴趣为老师
2学会活学活用,将自己学到的知识与计算机知识结合起来,尝试将自己的其他学科的知识体系结合优化与计算机知识体系的联系,并希望可以建立一种新的更加优化的知识体系

计算AB的矩阵乘积

input:n, m, ni, mi
n:矩阵A的行数
m:矩阵A的列数
ni:矩阵B的行数
mi:矩阵B的列数
输入矩阵A,输入矩阵B

output:
输出AB的矩阵乘积

example input1:

3 4 4 2
1 0 2 -1
0 1 -1 3
-1 2 0 1
1 2
2 1
0 3
1 4

example output1:

Very Good!
AB = 
0 4
5 10
4 4

example input2:

3 3 3 3
1 -3 2
3 -4 1
2 -5 3
2 5 6
1 2 5
1 3 2

example output2:

Very Good!
AB = 
1 5 -5
3 10 0
2 9 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值