当前搜索:

老师给我的指点——深刻剖析了我

今天上午找导师有事,导师坐下来和我聊了聊。 他说,就他的观察,我有以下几个方面的问题。 一、感觉我在做事上总是欠缺那么一点东西。 就是说,给我的事情,我是能做完也让别人没法批评我,但是总感觉欠缺一点东西,相比师妹,每次给任务1分可以做完1.2分,而我每次都是0.8分。 虽然无可厚非,但是总...
阅读(264) 评论(0)

pandas绘图方法

一、最简单的方法df = get_price('002340.XSHE', start_date='2017-1-1', end_date='2017-10-11', frequency='daily', fields=None, skip_paused=False...
阅读(168) 评论(0)

学不下去时坚持的方法

长久以来,我一直徘徊在想要学习+++++,结果学了++就不行了,学不下去的状态。 虽然,应该比以前还是厉害了些至少可以+++了,但是也不稳定。 一般如果周六日玩两天,周一周二效率会非常高。 但是周三、周四就越来越低。 我想了很多办法,尝试了很多,知乎上看了类...
阅读(145) 评论(0)

用Python解线性方程组——Scipy包和自己写

用Python解决方程组、微积分等问题,主要是用到Python的一个库——SymPy库。可以说这个项目也主要是学习SymPy库的用法。解二元一次方程功能实现解方程的功能主要是使用Sympy中solve函数实现。示例题目是: 方程表示代码表示与手写还是有区别的,下面列出常用的: 加号 + 减号...
阅读(1058) 评论(0)

Python如何忽略警告

有时候用pandas包,对df表作处理时,常常会伴随着警告出现,非常的不美观,因此可以如下处理:在代码里加入这两行,就可以不再出现警告了。import warnings warnings.filterwarnings("ignore")大功告成!
阅读(707) 评论(0)

线性代数教程之二——特征分解

如果说一个向量v是方阵A的特征向量,将一定可以表示成下面的形式: λ为特征向量 v 对应的特征值。特征值分解是将一个矩阵分解为如下形式: 其中,Q是这个矩阵A的特征向量组成的矩阵,Σ是一个对角矩阵,每一个对角线元素就是一个特征值,里面的特征值是由大到小排列的,这些特征值所对应的特征向量就是描述...
阅读(384) 评论(0)

找工作这几个月

2017-10-11 星期三宣讲会 湖南大学 2017-10-11(周三) 15:00 广发银行 湖南大学 复临舍201 2017-10-12(周四) 15:00-17:00 招联消费金融 湖南大学 复临舍308(更新) 2017-10-16(周一) 19:00 国信证券 湖南大学 东楼3...
阅读(173) 评论(0)

线性代数教程之一——矩阵乘法计算、理解及代码实现

参考了《深度学习》巨作,以下是矩阵篇的目录。 1 乘法设矩阵A为m×n矩阵,B为n×p矩阵,则它们的乘法公式为: 相关代码实现:# 矩阵滴乘法运算 # 注意:需要传入np.matrix类型数据 def Matrix_Mul(a,b): if a.shape[1] != b.shape[...
阅读(619) 评论(0)

Python绘图问题:Matplotlib中柱状图bar使用

matplotlib.pyplot.bar(left, height, alpha=1, width=0.8, color=, edgecolor=, label=, lw=3) Make a bar plot,绘制柱状图。参数: 1. left:x轴的位置序列,一般采用arange函数产生一个...
阅读(2460) 评论(0)

Python绘图问题:Matplotlib中rcParams使用

主要作用为指定图片像素: matplotlib.rcParams[‘figure.figsize’]#图片像素 matplotlib.rcParams[‘savefig.dpi’]#分辨率 plt.savefig(‘plot123_2.png’, dpi=200)#指定分辨率 %m...
阅读(1256) 评论(0)

Python绘图问题:IPython.core.pylabtools的figsize

先看官方文档:IPython.core.pylabtools.figsize(sizex, sizey) Set the default figure size to be [sizex, sizey].This is just an easy to remember, convenience ...
阅读(595) 评论(0)

Python绘图问题:Matplotlib中%matplotlib inline是什么、如何使用?

%matplotlib inline 是一个魔法函数(Magic Functions)。官方给出的定义是:IPython有一组预先定义好的所谓的魔法函数(Magic Functions),你可以通过命令行的语法形式来访问它们。可见“%matplotlib inline”就是模仿命令行来访问magi...
阅读(9885) 评论(1)

Python绘图问题:Matplotlib中如何正确显示中文

解决这个问题有多种方法,这里只介绍一种最简便的方法。只需要加一个import,加一行代码,再稍微修改对应位置就可以了。一、先看一下错误显示import matplotlib.pyplot as plt plt.plot((1,2,3),(4,3,-1)) plt.xlabel(u'横坐标') pl...
阅读(663) 评论(0)

数据分析介绍之十——双变量建立关系之对数图

对数图是科学家、工程师和股票分析师随处可见的标准工具
阅读(260) 评论(0)

数据分析介绍之九——双变量建立关系之平滑噪音

当数据嘈杂时,我们更关心的是确定数据是否显示出有意义的关系,而不是建立精确的字符。
阅读(274) 评论(0)

数据分析介绍之八——双变量建立关系之散点图

一对一的绘制数据是简单的就去做
阅读(407) 评论(0)

数据分析介绍之七——单变量数据观察之汇总统计和箱线图

模块提供了高效、便捷的numpy Python大数值数组的处理。
阅读(219) 评论(0)

数据分析介绍之六——单变量数据观察之汇总统计和箱线图

你可能已经注意到,到目前为止我还没有在所有关于平均数和中位数、标准差等简单的主题发言,和百分位数。
阅读(479) 评论(0)

数据分析介绍之五——单变量数据观察之排序图和升幅图

有一个与直方图和CDF有关的技术是值得了解的
阅读(270) 评论(0)

数据分析介绍之四——单变量数据观察之累积分布函数

数据分析介绍之四——单变量数据观察之累积分布函数
阅读(864) 评论(0)
    个人资料
    等级:
    访问量: 18万+
    积分: 2327
    排名: 1万+
    文章存档
    最新评论