自然数幂求和——第二类Strling数

这个问题似乎有很多种求法,但感觉上第二类Strling数的做法是最方便的。


问题

求下面这个式子:
∑ i = 0 n i k \sum_{i=0}^n i^k i=0nik
n n n的范围可以很大。


第二类Strling数

第二类Strling数记作 S ( n , m ) S(n,m) S(n,m) S n m S_n^m Snm
定义: n n n个相同的球放在 m m m个不同的箱子里的方案数(其中的每一个箱子至少有一个球)。
很容易推出一个式子: S n m = S n − 1 m − 1 + m S n − 1 m S_n^m=S_{n-1}^{m-1}+mS_{n-1}^m Snm=Sn1m1+mSn1m。不解释。
有个通项公式,但是我不会推……不过在处理这个问题的时候用不着。


一个性质

a k = ∑ i = 0 k S k i i ! C a i a^k=\sum_{i=0}^kS_k^i i! C_a^i ak=i=0kSkii!Cai
如果直接理性地证明可能不容易,所以在这里通过它的定义来推理一下:
对于等式左边,相当于 k k k个不同的球放在 a a a个不同的箱子里。
对于等式右边,先枚举非空箱子的个数, S k i S_k^i Ski表示 k k k个不同的球放在 i i i个相同的箱子里。乘上 i ! i! i!相当于放在不同的箱子里,再乘上非空箱子的选法 C a i C_a^i Cai
当然这条式子也可以化成:
∑ i = 0 k S k i ∏ j = a − i + 1 a j \sum_{i=0}^kS_k^i \prod_{j=a-i+1}^a j i=0kSkij=ai+1aj


推理

先把结论放在前面:
∑ i = 0 n i k = ∑ i = 0 k S k i ∏ j = n − i + 1 n + 1 j i + 1 \sum_{i=0}^n i^k=\sum_{i=0}^k\frac{S_k^i\prod_{j=n-i+1}^{n+1}j}{i+1} i=0nik=i=0ki+1Skij=ni+1n+1j
证明如下:
∑ i = 0 n i k = ∑ a = 0 n ∑ i = 0 k S k i i ! C a i = ∑ i = 0 k S k i i ! ∑ a = 0 n C a i \sum_{i=0}^n i^k \\ =\sum_{a=0}^n\sum_{i=0}^kS_k^i i! C_a^i \\ =\sum_{i=0}^kS_k^i i!\sum_{a=0}^nC_a^i i=0nik=a=0ni=0kSkii!Cai=i=0kSkii!a=0nCai
因为 a &lt; i a&lt;i a<i C a i = 0 C_a^i=0 Cai=0,所以
= ∑ i = 0 k S k i i ! ∑ a = i n C a i =\sum_{i=0}^kS_k^i i!\sum_{a=i}^nC_a^i =i=0kSkii!a=inCai
C m n = C m − 1 n − 1 + C m − 1 n C_m^n =C_{m-1}^{n-1}+C_{m-1}^n Cmn=Cm1n1+Cm1n
∑ a = i n C a i = C i i + C i + 1 i + ⋯ + C n i = C i i + 1 + C i i + C i + 1 i + ⋯ + C n i = C i + 1 i + 1 + C i + 1 i + ⋯ + C n i ⋯ = C n + 1 i + 1 \sum_{a=i}^nC_a^i=C_i^i+C_{i+1}^i+\cdots +C_n^i \\ =C_i^{i+1}+C_i^i+C_{i+1}^i+\cdots +C_n^i \\ =C_{i+1}^{i+1}+C_{i+1}^i+\cdots +C_n^i \\ \cdots \\ =C_{n+1}^{i+1} a=inCai=Cii+Ci+1i++Cni=Cii+1+Cii+Ci+1i++Cni=Ci+1i+1+Ci+1i++Cni=Cn+1i+1
所以原式又可以化成下面这样:
= ∑ i = 0 k S k i i ! C n + 1 i + 1 = ∑ i = 0 k S k i ∏ j = n − i + 1 n + 1 j i + 1 =\sum_{i=0}^kS_k^i i!C_{n+1}^{i+1} \\ =\sum_{i=0}^k\frac{S_k^i\prod_{j=n-i+1}^{n+1}j}{i+1} =i=0kSkii!Cn+1i+1=i=0ki+1Skij=ni+1n+1j
这样式子就推完了。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值