Sleep-EDF数据集介绍

1.数据集介绍

sleep-edf(European Data Format即欧洲数据格式:一种用于交换和存储多通道生物和物理信号的简单而灵活的格式),其中Version 2的数据库包含197个整夜的PolySomnoGraphic睡眠记录,其中包含EEG,EOG,下巴EMG和事件标记。一些记录还包含呼吸和体温。训练有素的技术人员会根据Rechtschaffen和Kales手册手动对相应的睡眠多导图(睡眠模式)进行打分,这个数据的标记必须要专业的从事人员,但自己在调研AASM评分手册的时候 得到一些启发,后期可以尝试以量化的标准形成一个相对值得信赖的ground truth,可用于有监督分类。
Version1的数据集中只包含61个整晚的PSG。

2.具体元数据表示形式(微观表示)

以*PSG.edf为后缀的文件是包含EEG(来自Fpz-Cz和Pz-Oz电极位置),EOG(只有水平),下颌肌EMG和事件标记的整夜多睡眠睡眠记录。 SC* PSG.edf类型文件(请参阅“睡眠录像带研究(sleep cassette)”)通常还包含口鼻呼吸和直肠体温。

*Hypnogram.edf文件包含与PSG对应的睡眠模式的注释。这些模式(催眠图)包括睡眠阶段W,R,1、2、3、4,M(身体移动时间)和? (未评分)。所有催眠图都是由训练有素的技术人员(根据催眠图文件名中的第八个字母来区分)手动评分,但基于Fpz-Cz / Pz-Oz脑电图而不是C4-A1 / C3-A2脑电图,如[4]所建议)。

所有EDF标头字段也符合EDF +规范,并且未记录的信号已从ST*PSG.edf文件中删除。

3. 数据集中包含的实验(宏观表示)

3.1 睡眠盒式磁带研究和数据

        顾名思义,是利用便携式的记录仪将数据存储在磁带中的方式采集。153个SC *文件(SC =睡眠盒式磁带)是在1987-1991年的一项研究中对年龄在25-101岁的健康白人中对睡眠的影响进行研究而获得的,没有任何与睡眠有关的药物。随后在受试者住所的两个日夜时段记录了两个大约20小时的PSG。受试者继续正常活动,但佩戴了鲍勃(Bob)1987年论文[7]第VI.4章(第92页)中所述的类似Walkman的盒式磁带录音机。

        文件以SC4ssNEO-PSG.edf的形式命名,其中ss是主题编号,N是夜晚。被试36和52的头一个晚上以及被试13的第二个晚上由于盒式磁带故障而丢失。
EOG和EEG信号均以100 Hz采样。对脑膜下EMG信号进行电子高通滤波,整流和低通滤波,然后以uV rms(均方根)表示的所得EMG包络以1Hz采样。鼻腔气流,直肠体温和事件标记也以1Hz采样。
        具体信息在文件头与SC-subjects.xls进一步描述了相关主题和记录。

3.2 睡眠遥测研究和数据

        相比上面,遥测是指 利用射频发射的记录仪,将采集到的信号实时发射到计算机上的采集方式。在1994年替马西泮(一种安定药)22名白人男性和女性的睡眠影响进行的一项研究中,获得了44个ST *文件(ST =睡眠遥测),而没有其他药物。受试者入睡时轻度困难,但其他方面健康。在医院的两个晚上记录了大约9个小时的PSG,其中一个在服用替马西泮后,另一个在服用安慰剂后。受试者佩戴了微型遥测系统,该系统具有很好的信号质量。

        文件以ST7ssNJ0-PSG.edf的形式命名,其中ss是主题编号,N是夜晚。
EOG,EMG和EEG信号以100 Hz采样,事件标记为1 Hz。物理标记尺寸ID + ME与以下事实有关:按下标记(M)按钮会产生相对于基线值的两秒偏移,该基线值标识遥测单位(如果为正,则ID = 1或2)或标记为错误(E)在遥测链接中是否为负。在文件头与描述性电子表格ST-subjects.xls中有详细的描述。

4. 获取方式

1)在终端使用wget获得:wget -r -N -c -np https://physionet.org/files/sleep-edfx/1.0.0/

2)使用Google Cloud命令行工具访问数据(请参阅gsutil文档以获取指导):gsutil -m -u YOUR_PROJECT_ID cp -r gs://sleep-edfx-1.0.0.physionet.org DESTINATION

3)在网站直接结尾下载,网站还提供了相应的google云下载链接,网站如下: Sleep-EDF Database Expanded v1.0.0

### Sleep EDF Model in IT Context In the context of information technology (IT), handling sleep-related European Data Format (EDF) files involves processing and analyzing physiological signals recorded during sleep studies. These files contain time series data from various sensors such as EEG, EMG, EOG, etc., which are crucial for diagnosing sleep disorders. To work with these EDF files programmatically, libraries like `pyedflib` can be used to read and write EDF files efficiently[^1]. This library provides Python bindings that allow developers to interact directly with EDF file structures without needing extensive knowledge about their internal format specifications. For implementing a system around sleep EDF models: #### Reading an EDF File ```python from pyedflib import highlevel signals, signal_headers, header = highlevel.read_edf('example.edf') print(signals.shape) ``` This code snippet demonstrates how one might load an EDF file into memory using `highlevel.read_edf()`, extracting both raw signal data (`signals`) along with metadata describing each channel's properties stored within `signal_headers`. #### Writing an EDF File Creating new EDF files is also supported through similar functions provided by this package: ```python import numpy as np from datetime import datetime data_record = { 'technician': '', 'recording_additional': '', 'patientname': 'John Doe', 'patientcode': '0001', 'equipment': 'Embla A10', 'admincode': '', 'gender': 'Male', 'startdate': datetime.now(), 'birthdate': "27.08.1973" } annotations = [] channels_data = [ {'label': 'EEG Fpz-Cz', 'dimension': 'uV', 'sample_rate': 100, 'physical_max': 500, 'physical_min': -500, 'digital_max': 8388607, 'digital_min': -8388608}, ] channel_data = [np.random.randn(100)] * len(channels_data) highlevel.write_edf('output_file.edf', channel_data, channels_data, annotations=annotations, patient=data_record) ``` The above example shows writing out synthetic EEG-like data alongside relevant headers required when generating valid EDF outputs suitable for further analysis or sharing between clinical systems. --related questions-- 1. What other programming languages support robust libraries for working with EDF files? 2. How does the structure of an EDF file differ from standard binary formats commonly found in IT applications? 3. Can you provide examples where machine learning algorithms have been applied successfully on datasets derived from sleep EDF recordings? 4. Are there any specific challenges encountered while preprocessing large volumes of continuous sensor data extracted from multiple-night polysomnography sessions captured via EDF?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值