学习几种LLM的评分方法

BLEU(Bilingual Evaluation Understudy)评分

BLEU(Bilingual Evaluation Understudy)是一种广泛用于评估机器翻译和自然语言生成任务质量的指标。BLEU-4评分是基于四个n-gram(从单个词到四词组合)匹配度的加权几何平均值,旨在衡量生成文本与参考文本之间的相似性

n-gram 精确度

对于每个n-gram(n=1,2,3,4),计算生成文本中n-gram在参考文本中出现的比例。例如:

Unigram (1-gram):单独词汇的匹配比例。

Bigram (2-gram):两个连续词汇的匹配比例。

Trigram (3-gram):三个连续词汇的匹配比例。

Four-gram (4-gram):四个连续词汇的匹配比例。

 from nltk.translate.bleu_score import sentence_bleu
 reference = [['this', 'is', 'a', 'test'], ['this', 'is' 'test']]
 candidate = ['this', 'is', 'a', 'test']
 score = sentence_bleu(reference, candidate)
 print(score)
1.0

ROUGE

ROUGE指标是在机器翻译、自动摘要、问答生成等领域常见的评估指标。
ROUGE(Recall-Oriented Understudy for Gisting Evaluation)是比BLEU更适合的评估指标,尤其擅长评估临床报告生成、医学摘要等任务。

ROUGE-L

Clinical Accuracy Score

Drug-Drug Interaction (DDI) Detection

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

想成为全栈工程师的小小白

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值