题目描述
在一个 n * m 的二维数组中,每一行都按照从左到右递增的顺序排序,每一列都按照从上到下递增的顺序排序。请完成一个高效的函数,输入这样的一个二维数组和一个整数,判断数组中是否含有该整数。
示例:
现有矩阵 matrix 如下:
[
[1, 4, 7, 11, 15],
[2, 5, 8, 12, 19],
[3, 6, 9, 16, 22],
[10, 13, 14, 17, 24],
[18, 21, 23, 26, 30]
]
给定 target = 5,返回 true。
给定 target = 20,返回 false。
限制:
0 <= n <= 1000
0 <= m <= 1000
解题思路
根据题目描述可以得出两点结论:
1. i(行)不变,随着 j(列)增大值也增大。
2. j 不变,随着i增大值也增大。
i = matrix[0].length - 1;
j = 0;
我们可以建立一个直角坐标系,原点表示为matrix[i] [j],即最后一行的第一个元素,所有元素落在第一象限,这样x轴表示i,y轴表示j。
我们只要判断target与原点比较:target > matrix[i] [j]时,就右移;j++;target < matrix[i] [j]时,上移;
直到i < 0或者 j >= matrix.length时,目标元素不在该数组里。
代码实现
public static boolean findNumberIn2DArray(int[][] matrix, int target) {
for (int i = matrix.length - 1; i >= 0; i--) {
for (int j = 0; j < matrix[0].length; j++) {
if (target > matrix[i][j]) {
continue;
}
else if (target < matrix[i][j]) {
break;
} else
return true;
}
}
return false;
}