描述
已知矩阵的大小定义为矩阵中所有元素的和。给定一个矩阵,你的任务是找到最大的非空(大小至少是1 * 1)子矩阵。
比如,如下4 * 4的矩阵
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
的最大子矩阵是
9 2
-4 1
-1 8
这个子矩阵的大小是15。
输入
输入是一个N * N的矩阵。输入的第一行给出N (0 < N <= 100)。再后面的若干行中,依次(首先从左到右给出第一行的N个整数,再从左到右给出第二行的N个整数……)给出矩阵中的N
2个整数,整数之间由空白字符分隔(空格或者空行)。已知矩阵中整数的范围都在[-127, 127]。
输出
输出最大子矩阵的大小。
样例输入
样例输出
比如,如下4 * 4的矩阵
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
的最大子矩阵是
9 2
-4 1
-1 8
这个子矩阵的大小是15。
4 0 -2 -7 0 9 2 -6 2 -4 1 -4 1 -1 8 0 -2
15
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
int f[120][120],a[120][120];
int main()
{
int n,i,j,maxn=0,k;
scanf("%d",&n);
for (i=1;i<=n;i++)
for (j=1;j<=n;j++)
{
scanf("%d",&a[i][j]);
f[i][j]=a[i][j]+f[i][j-1];
}
for (i=1;i<=n;i++)//第i列
for (j=0;j<i;j++)
{
int maxx=0;
for (k=1;k<=n;k++)//第k行
{
maxx+=f[k][i]-f[k][j];
if (maxx<0) maxx=0;
maxn=max(maxn,maxx);
}
}
printf("%d",maxn);
}