最大子矩阵

描述
已知矩阵的大小定义为矩阵中所有元素的和。给定一个矩阵,你的任务是找到最大的非空(大小至少是1 * 1)子矩阵。

比如,如下4 * 4的矩阵

0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2

的最大子矩阵是

9 2
-4 1
-1 8

这个子矩阵的大小是15。
输入
输入是一个N * N的矩阵。输入的第一行给出N (0 < N <= 100)。再后面的若干行中,依次(首先从左到右给出第一行的N个整数,再从左到右给出第二行的N个整数……)给出矩阵中的N 2个整数,整数之间由空白字符分隔(空格或者空行)。已知矩阵中整数的范围都在[-127, 127]。
输出
输出最大子矩阵的大小。
样例输入
4
0 -2 -7 0 9 2 -6 2
-4 1 -4  1 -1

8  0 -2
样例输出

15

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
int f[120][120],a[120][120];
int main()
{
	int n,i,j,maxn=0,k;
	scanf("%d",&n);
	for (i=1;i<=n;i++)
	  for (j=1;j<=n;j++)
	  {
	  	scanf("%d",&a[i][j]);
	  	f[i][j]=a[i][j]+f[i][j-1];
	  }
	    
	for (i=1;i<=n;i++)//第i列 
	  for (j=0;j<i;j++) 
	{
		int maxx=0;
		for (k=1;k<=n;k++)//第k行
		  {
		  	maxx+=f[k][i]-f[k][j];
		  	if (maxx<0) maxx=0;
		  	maxn=max(maxn,maxx);
		  }
	}
	printf("%d",maxn);      
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值