[python]:最大子矩阵

本文探讨如何使用动态规划解决寻找二维数组中最大子矩阵的问题。通过将二维数组转换为一维数组,然后应用动态规划策略来求解。
摘要由CSDN通过智能技术生成
给定一个正整数、负整数和 0 组成的 N × M 矩阵,编写代码找出元素总和最大的子矩阵。

返回一个数组 [r1, c1, r2, c2],其中 r1, c1 分别代表子矩阵左上角的行号和列号,r2, c2 分别代表右下角的行号和列号。若有多个满足条件的子矩阵,返回任意一个均可。

注意:本题相对书上原题稍作改动

示例:

输入:
[
   [-1,0],
   [0,-1]
]
输出:[0,1,0,1]
解释:输入中标粗的元素即为输出所表示的矩阵
 

说明:

1 <= matrix.length, matrix[0].length <= 200

一、动态规划
将二位数组转为一维数组。

class Solution:
    def getMaxMatrix(self, matrix: List[List[int]]) -> List[int]:
        ans = [0 for _ in range(4)]
        row = len(matrix)
        colum = len(matrix[0])
        max_sum = -sys.maxsize-1
        ans1, ans2 = -1, -1
        for i in range(row):
        #b[0]存储每列和
            b = [0 for _ in range(colum)]
            for j in range(i, row):
                ssum = 0
                for k in range(colum):
                    b[k] += matrix[j][k]
                    if ssum > 0:
                      
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值