题目:
题解:
二分图染色+模拟
1.首先考虑一个简单情况——单栈排序,显然有这样的一个事实:a[i]和a[j] 不能压入同一个栈⇔存在一个k,使得i<j<k且a[k]<a[i]<a[j]
时间复杂度为O(n^3).对于n<=1000仍显吃力,对此可以用动态规划的思想,将上述复杂度降到O(n^2)。
状态:f[i]=min(a[i],a[i+1],... ,a[n]) 边界条件:f[n+1]=INF 状态转移方程:f[i]=min(f[i+1],a[i]);
于是上述判断就转化为了f[j+1]<a[i] && a[i]<a[j]
2.扩展到双栈排序:
如果a[i]和a[j]不能在一个栈内,即连接一条i与j之间的无向边,接下来我们只需要判断这个图是否为二分图
由于题目中说编号的字典序要尽可能的小,那么就把编号小的尽可能放到stack1
判断二分图的方法可以采用黑白染色的方式,先从编号小的开始染,第一个顶点染成黑色,相邻的顶点染成不同的颜色,如果发现黑白冲突,那么说明这个图不是一个二分图,是不合法的,输出0.
代码:
#include <cstdio>
#include <iostream>
#define INF 1e9
#define N 1005
using namespace std;
int q1[N],q2[N],a[N],f[N],nxt[N*2],point[N*2],v[N*2],tot,co[N];
bool fff=false;
void addline(int x,int y)
{
++tot; nxt[tot]=point[x]; point[x]=tot; v[tot]=y;
++tot; nxt[tot]=point[y]; point[y]=tot; v[tot]=x;
}
void dfs(int x,int fa,int c)
{
if (fff) return;
co[x]=c;
for (int i=point[x];i;i=nxt[i])
if(v[i]!=fa)
{
if (co[v[i]]==co[x]) {fff=true; return;}
dfs(v[i],x,c^2);
if (fff) return;
}
}
int main()
{
int n,cc=0,i,j,t1=0,t2=0;
scanf("%d",&n);
for (i=1;i<=n;i++)
scanf("%d",&a[i]),f[i]=a[i];
f[n+1]=INF;
for (i=n-1;i>=1;i--)
f[i]=min(f[i],f[i+1]);
for (i=1;i<=n;i++)
for (j=i+1;j<=n;j++)
if (f[j+1]<a[i] && a[i]<a[j])
addline(i,j);
for (i=1;i<=n;i++)
if (!co[i])
if (fff)break;
else dfs(i,0,1);
if (fff){printf("0");return 0;}
int mq=1;
for (i=1;i<=n;i++)
{
if (co[i]==1) {q1[++t1]=a[i];printf("a ");}
while (q1[t1]==mq) {printf("b "); mq++;t1--;}
if (co[i]==3) {q2[++t2]=a[i];printf("c ");}
while (q2[t2]==mq) {printf("d "); mq++; t2--;}
}
while (q1[t1]==mq || q2[t2]==mq)
{
if (q1[t1]==mq) {printf("b "); mq++;t1--;}
else {printf("d "); mq++; t2--;}
}
}