最简洁易懂的最大子矩阵问题(极大化思想)

【摘要】 有关最大(或最优)子矩形及相关变形问题,介绍了极大化思想在这类问题中的应用。

【关键字】 矩形,障碍点,极大子矩形

【正文】

一、 问题

最大子矩形问题:在一个给定的矩形网格中有一些障碍点,要找出网格内部不包含任何障碍点,且边界与坐标轴平行的最大子矩形。

这是近期经常出现的问题,例如冬令营2002的《奶牛浴场》,就属于最大子矩形问题。

Winter Camp2002,奶牛浴场
题意简述:(原题见论文附件)
John要在矩形牛场中建造一个大型浴场,但是这个大型浴场不能包含任何一个奶牛的产奶点,但产奶点可以出在浴场的边界上。John的牛场和规划的浴场都是矩形,浴场要完全位于牛场之内,并且浴场的轮廓要与牛场的轮廓平行或者重合。要求所求浴场的面积尽可能大。
参数约定:产奶点的个数S不超过5000,牛场的范围N×M不超过30000×30000。

二、 定义和说明

普及概念。

1、定义有效子矩形为内部不包含任何障碍点边界与坐标轴平行的子矩形。如图所示,第一个是有效子矩形(尽管边界上有障碍点),第二个不是有效子矩形(因为内部含有障碍点)。
这里写图片描述
2、极大有效子矩形:一个有效子矩形,如果不存在包含它且比它大的有效子矩形,就称这个有效子矩形为极大有效子矩形。(以下称为极大子矩形

3、定义最大有效子矩形为所有有效子矩形中最大的一个(或多个)。以下简称为最大子矩形。

三、 极大化思想

【定理1】在一个有障碍点的矩形中的最大子矩形一定是一个极大子矩形。

证明:如果最大子矩形A不是一个极大子矩形,那么根据极大子矩形的定义,存在一个包含A且比A更大的有效子矩形,这与“A是最大子矩形”矛盾,所以【定理1】成立。

四、 从问题的特征入手,得到两种常用的算法

根据定理1,我们可以得到这样一个解题思路:
通过枚举所有的极大子矩形,就可以找到最大子矩形。下面根据这个思路来设计算法。
约定:为了叙述方便,设整个矩形的大小为n×m,其中障碍点个数为s。

算法1(基于s的算法)

算法的思路是通过枚举所有的极大子矩形找出最大子矩形。根据这个思路可以发现,如果算法中枚举的子矩形不是有效子矩形、或者不是极大子矩形,那么可以肯定这个算法做了“无用功”,这也就是需要优化的地方。怎样保证每次枚举的都是极大子矩形呢,我们先从极大子矩形的特征入手。

【定理2】:一个极大子矩形的四条边一定都不能向外扩展。更进一步地说,一个有效子矩形是极大子矩形的充要条件是这个子矩形的每条边要么覆盖了一个障碍点,要么与整个矩形的边界重合。

根据定理2,我们可以得到一个枚举极大子矩形的算法。为了处理方便,首先在障碍点的集合中加上整个矩形四角上的点。每次枚举子矩形的上下左右边界(枚举覆盖的障碍点),然后判断是否合法(内部是否有包含障碍点)。这样的算法时间复杂度为 O(s5) ,显然太高了。考虑到极大子矩形不能包含障碍点,因此这样枚举4个边界显然会产生大量的无效子矩形。

考虑只枚举左右边界的情况。对于已经确定的左右边界,可以将所有处在这个边界内的点按从上到下排序,如图1中所示,每一格就代表一个有效子矩形。这样做时间复杂度为 O(s3) 。由于确保每次得到的矩形都是合法的,所以枚举量比前一种算法小了很多。但需要注意的是,这样做枚举的子矩形虽然是合法的,然而不一定是极大的。所以这个算法还有优化的余地。
这里写图片描述

回顾上面的算法,我们不难发现,所枚举的矩形的上下边界都覆盖了障碍点或者与整个矩形的边界重合,问题就在于左右边界上。只有那些左右边界也覆盖了障碍点或者与整个矩形的边界重合的有效子矩形才是我们需要考察的极大子矩形,所以前面的算法做了不少“无用功”。怎么减少“无用功”呢,这里介绍一种算法1。

思路

先枚举极大子矩形的左边界,然后从左到右依次扫描每一个障碍点,并不断修改可行的上下边界,从而枚举出所有以这个定点为左边界的极大子矩形。考虑如图2中的三个点,现在我们要确定所有以1号点为左边界的极大矩形。先将1号点右边的点按横坐标排序。然后按从左到右的顺序依次扫描1号点右边的点,同时记录下当前的可行的上下边界。
这里写图片描述
开始时令当前的上下边界分别为整个矩形的上下边界。然后开始扫描。第一次遇到2号点,以2号点作为右边界,结合当前的上下边界,就得到一个极大子矩形(如图3)。同时,由于所求矩形不能包含2号点,且2号点在1号点的下方,所以需要修改当前的下边界,即以2号点的纵坐标作为新的下边界。
这里写图片描述
第二次遇到3号点,这时以3号点的横坐标作为右边界又可以得到一个满足性质1的矩形(如图4)。类似的,需要相应地修改上边界。以此类推,如果这个点是在当前点(确定左边界的点)上方,则修改上边界;如果在下方,则修改下边界;如果处在同一行,则可中止搜索(因为后面的矩形面积都是0了)。
这里写图片描述
这样做是否将所有的极大子矩形都枚举过了呢?可以发现,这样做只考虑到了左边界覆盖一个点的矩形,因此我们还需要枚举左边界与整个矩形的左边界重合的情况。这还可以分为两类情况。
1、左边界与整个矩形的左边界重合,而右边界覆盖了一个障碍点的情况,对于这种情况,可以用类似的方法从右到左扫描每一个点作为右边界的情况。
2、左右边界均与整个矩形的左右边界重合的情况,对于这类情况我们可以在预处理中完成:
先将所有点按纵坐标排序,然后可以得到以相邻两个点的纵坐标为上下边界,左右边界与整个矩形的左右边界重合的矩形,显然这样的矩形也是极大子矩形,因此也需要被枚举到。加了整个矩形右上角和右下角的两个点,所以不会遗漏右边界与整个矩形的右边重合的极大子矩形(如图5)。需要注意的是,如果扫描到的点不在当前的上下边界内,那么就不需要对这个点进行处理。
这里写图片描述
通过前面两步,可以枚举出所有的极大子矩形。算法1的时间复杂度是 O(s2)

虽然以上的算法(算法1)看起来是比较高效的,但也有使用的局限性。可以发现,这个算法的复杂度只与障碍点的个数s有关。但对于某些问题,s最大有可能达到n×m,当s较大时,这个算法就未必能满足时间上的要求了。能否设计出一种依赖于n和m的算法呢?这样在算法1不能奏效的时候我们还有别的选择。我们再重新从最基本的问题开始研究。

算法2(基于mn上的算法)

首先,根据定理1:最大有效子矩形一定是一个极大子矩形。
不过与前一种算法不同的是,我们不再要求每一次枚举的一定是极大子矩形而只要求所有的极大子矩形都被枚举到。看起来这种算法可能比前一种差,其实不然,因为前一种算法并不是完美的:虽然每次考察的都是极大子矩形,但它还是做了一定量的“无用功”。可以发现,当障碍点很密集的时候,前一种算法会做大量没用的比较工作。要解决这个问题,我们必须跳出前面的思路,重新考虑一个新的算法。注意到极大子矩形的个数不会超过矩形内单位方格的个数,因此我们有可能找出一种时间复杂度是O(N×M)的算法。

定义:

有效竖线:除了两个端点外,不覆盖任何障碍点的竖直线段。

悬线:上端点覆盖了一个障碍点或达到整个矩形上端的有效竖线。如图所示的三个有效竖线都是悬线。
这里写图片描述
对于任何一个极大子矩形,它的上边界上要么有一个障碍点,要么和整个矩形的上边界重合。那么如果把一个极大子矩形按x坐标不同切割成多个(实际上是无数个)与y轴垂直的线段,则其中一定存在一条悬线。而且一条悬线通过尽可能地向左右移动恰好能得到一个子矩形(未必是极大子矩形,但只可能向下扩展)。通过以上的分析,我们可以得到一个重要的定理。

【定理3】:如果将一个悬线向左右两个方向尽可能移动所得到的有效子矩形称为这个悬线所对应的子矩形,那么所有悬线所对应的有效子矩形的集合一定包含了所有极大子矩形的集合。

PS:定理3中的“尽可能”移动指的是移动到一个障碍点或者矩形边界的位置。

根据【定理3】可以发现,通过枚举所有的悬线,就可以枚举出所有的极大子矩形。由于每个悬线都与它底部的那个点一一对应,所以悬线的个数=(n-1)×m(以矩形中除了顶部的点以外的每个点为底部,都可以得到一个悬线,且没有遗漏)。如果能做到对每个悬线的操作时间都为O(1),那么整个算法的复杂度就是 O

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值