描述
已知矩阵的大小定义为矩阵中所有元素的和。给定一个矩阵,你的任务是找到最大的非空(大小至少是1 * 1)子矩阵。
比如,如下4 * 4的矩阵
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
的最大子矩阵是
9 2
-4 1
-1 8
这个子矩阵的大小是15。
输入
输入是一个N * N的矩阵。输入的第一行给出N (0 < N <= 100)。再后面的若干行中,依次(首先从左到右给出第一行的N个整数,再从左到右给出第二行的N个整数……)给出矩阵中的N
2个整数,整数之间由空白字符分隔(空格或者空行)。已知矩阵中整数的范围都在[-127, 127]。
输出
输出最大子矩阵的大小。
样例输入
样例输出
比如,如下4 * 4的矩阵
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
的最大子矩阵是
9 2
-4 1
-1 8
这个子矩阵的大小是15。
4 0 -2 -7 0 9 2 -6 2 -4 1 -4 1 -1 8 0 -2
15
要找出一个最大的子矩阵,当然,这只是一种情况的最大子矩阵(局部最大),不一定是最大。如果我们知道每一种情况的最大,要找出最大,那就简单了
假设这个最大子矩阵的维数是一维,要找出最大子矩阵, 原理与求“最大子段和问题” 是一样的。最大子段和问题的递推公式是 b[j]=max{b[j-1]+a[j], a[j]},b[j] 指的是从0开始到j的最大子段和,假设原始矩阵为:[9, 2, -6, 2], 那么最大字段和为11
#include<iostream>
#include<string.h>
#include<algorithm>
using namespace std;
int a[110][110];
int b[110];
int f(int b[110],int n)//求子段和
{
int i,max=0,sum=0;
for(i=1;i<=n;i++)
{
if(sum>0)
sum+=b[i];
else sum=b[i];
if(max<sum)
max=sum;
}
return max;
}
int main()
{
int i,j,max=0,n,sum=0,k;
cin>>n;
for(i=1;i<=n;i++)
for(j=1;j<=n;j++)
cin>>a[i][j];
for(i=1;i<=n;i++)
{
memset(b,0,sizeof(b));
for(j=i;j<=n;j++)
{
for(k=1;k<=n;k++)
b[k]+=a[j][k];
sum=f(b,n);
if(max<sum)
max=sum;
}
}
cout<<max<<endl;
return 0;
}