最大子矩阵

描述
已知矩阵的大小定义为矩阵中所有元素的和。给定一个矩阵,你的任务是找到最大的非空(大小至少是1 * 1)子矩阵。
比如,如下4 * 4的矩阵
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
的最大子矩阵是
9 2
-4 1
-1 8
这个子矩阵的大小是15。
输入
输入是一个N * N的矩阵。输入的第一行给出N (0 < N <= 100)。再后面的若干行中,依次(首先从左到右给出第一行的N个整数,再从左到右给出第二行的N个整数……)给出矩阵中的N 2个整数,整数之间由空白字符分隔(空格或者空行)。已知矩阵中整数的范围都在[-127, 127]。
输出
输出最大子矩阵的大小。
样例输入
4
0 -2 -7 0 9 2 -6 2
-4 1 -4  1 -1

8  0 -2
样例输出

15

要找出一个最大的子矩阵,当然,这只是一种情况的最大子矩阵(局部最大),不一定是最大。如果我们知道每一种情况的最大,要找出最大,那就简单了

假设这个最大子矩阵的维数是一维,要找出最大子矩阵, 原理与求“最大子段和问题” 是一样的。最大子段和问题的递推公式是 b[j]=max{b[j-1]+a[j], a[j]},b[j] 指的是从0开始到j的最大子段和,假设原始矩阵为:[9,  2, -6,  2], 那么最大字段和为11

#include<iostream>
#include<string.h>
#include<algorithm>
using namespace std;
int a[110][110];
int b[110];
int f(int b[110],int n)//求子段和
{
	int i,max=0,sum=0;
	for(i=1;i<=n;i++)
	{
		if(sum>0)
			sum+=b[i];
		else sum=b[i];
		if(max<sum)
			max=sum;
	}
	return max;
}
int main()
{
	int i,j,max=0,n,sum=0,k;
	cin>>n;
	for(i=1;i<=n;i++)
		for(j=1;j<=n;j++)
			cin>>a[i][j];
	for(i=1;i<=n;i++)
	{
		memset(b,0,sizeof(b));
		for(j=i;j<=n;j++)
		{
			for(k=1;k<=n;k++)
				b[k]+=a[j][k];
			sum=f(b,n);
			if(max<sum)
				max=sum;
		}
	}
	cout<<max<<endl;
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值