[ZOJ2314]Reactor Cooling(无源汇有上下界的可行流+讲解)

题目:

我是超链接

题意:

一个核反应堆的冷却系统有n个结点,有m条单向的管子连接它们,管子内流量有上下界的要求,问能否使液体在整个系统中循环流动。

题解:

无源汇有上下界的可行流板子咯
建图方法:

  • 建立源点ss,汇点tt
  • 给两点之间添加上限-下限的流量
  • 令d(i)表示所有流入i的边的下界和-所有流出i的边的下界和
    若d(i)>0,那么s->i,d(i)
    若d(i)<0,那么i->t,-d(i)

跑最大流,如果与 ss || tt 相连的边都能满留,就说明所有的下界都满足了,那么一定存在可行流。
流经x->y这条边的实际流量就是新图流量+这条边的流量下界

证明见下方普及向咯

代码:

#include <queue>
#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std;
#define INF 1e9
const int N=100005;
int tot,nxt[N],point[N],v[N],remind[N],dis[N],cur[N],in[N],out[N],sum,b[N],pipe[N];
void cl()
{
    tot=-1;memset(nxt,-1,sizeof(nxt)); memset(point,-1,sizeof(point));
    memset(in,0,sizeof(in)); memset(out,0,sizeof(out));sum=0;
}
void addline(int x,int y,int cap)
{
    ++tot; nxt[tot]=point[x]; point[x]=tot; v[tot]=y; remind[tot]=cap;
    ++tot; nxt[tot]=point[y]; point[y]=tot; v[tot]=x; remind[tot]=0;
}
int dfs(int now,int t,int limit)
{
    if (now==t || !limit) return limit;
    int flow=0,f;
    for (int i=cur[now];i!=-1;i=nxt[i])
    {
        cur[now]=i;
        if (dis[v[i]]==dis[now]+1 && (f=dfs(v[i],t,min(limit,remind[i]))))
        {
            flow+=f;
            limit-=f;
            remind[i]-=f;
            remind[i^1]+=f;
            if (!limit) break;
        }
    }
    return flow;
}
bool bfs(int s,int t)
{
    queue<int>q;
    q.push(s);
    memset(dis,0x7f,sizeof(dis));
    dis[s]=0;
    for (int i=s;i<=t;i++) cur[i]=point[i];
    while (!q.empty())
    {
        int x=q.front(); q.pop();
        for (int i=point[x];i!=-1;i=nxt[i])
          if (dis[v[i]]>INF && remind[i])
          {q.push(v[i]);dis[v[i]]=dis[x]+1;}
    }
    return dis[t]<INF;
}
int dinic(int s,int t)
{
    int ans=0;
    while (bfs(s,t)) ans+=dfs(s,t,INF);
    return ans;
}
int main()
{
    int T,n,m;
    scanf("%d",&T);
    while (T--)
    {
        cl();
        scanf("%d%d",&n,&m);
        for (int i=1;i<=m;i++)
        {
            int x,y,ll,cc;
            scanf("%d%d%d%d",&x,&y,&ll,&cc);
            in[y]+=ll; out[x]+=ll;
            addline(x,y,cc-ll);
            pipe[i]=tot; b[i]=ll;
        }
        for (int i=1;i<=n;i++)
          if (in[i]-out[i]>0)
            addline(0,i,in[i]-out[i]),sum+=in[i]-out[i];
          else addline(i,n+1,out[i]-in[i]);
        int maxflow=dinic(0,n+1);
        if (maxflow==sum)
        {
            printf("YES\n"); 
            for (int i=1;i<=m;i++) printf("%d\n",remind[pipe[i]]+b[i]);
        }
        else printf("NO\n");
        printf("\n");
    }
}

普及向:

既然是有上下界的网络流,这里先安利一波优秀的学姐
这一类是无源汇有上下界的可行流,上方说了建图方法,这里来证明一波!
我们设一条边的上界 c(u,v) ,下界 b(u,v)
首先一组正常的网络流应满足下面两条要求

  • f(u,i)=f(i,v)

  • 0<=g(u,v)<=c(u,v)

我们应该也要遵循以前的这两条要求啊,那就把把上界改成 c(u,v)b(u,v) ,下界还是0,其实不难理解,这不就是ta可以增流的范围吗,这样我们建出来一个新图
这样实际的流量f=下界+新图的流量,即 f(u,v)=b(u,v)+g(u,v)
但这样依然不是正确的,我们举个栗子
这里写图片描述
最后的这个流量图,虽然满足上下界要求,但是。。刚才的第一条要求并不满足
由于需要满足流量平衡条件

f(u,i)=f(i,v)

[b(u,i)+g(u,i)]=[b(i,v)+g(i,v)]

b(u,i)b(i,v)=g(i,v)g(u,i)

d(i)=b(u,i)b(i,v)

d(i)>0 g(i,v)=g(u,i)+d(i)

所以需要一条边流量为 d(i) 来补流
这里写图片描述
d(i)<0 时同理

可以发现,添加的所有与附加源点或者附加汇点相连的边必须满流,原图才有可行流

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值