题目:
题解:
最小值最大,二分答案(实数)
两个点之中取一个,不愧是2-SAT就是坦诚啊
距离<=mid的点对不能选,相当于是限制条件
下见普及向模型一,如果A,B不能同时取
连边A→B’,B→A’
用tarjan求强连通分量
如果某一组的两个点在同一个强连通分量里,则无解
因为p能到达的点是选p则必选的点
代码:
#include <cmath>
#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std;
const double eps=1e-9;
const int N=1000;
struct hh{double x,y;}dian[N];
int tot,nxt[N*N],v[N*N],point[N],nn,id,top,stack[N],low[N],dfn[N],belong[N],cnt;
bool vis[N];
int dcmp(double x)
{
if (x<eps && x>-eps) return 0;//相等
return (x>0)?1:-1;
}
double dis(hh a,hh b){return sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y));}
void addline(int x,int y){++tot; nxt[tot]=point[x]; point[x]=tot; v[tot]=y;}
void tarjan(int x)
{
low[x]=dfn[x]=++nn; vis[x]=1; stack[++top]=x;
for (int i=point[x];i;i=nxt[i])
if (!dfn[v[i]])
{
tarjan(v[i]);
low[x]=min(low[x],low[v[i]]);
}
else if (vis[v[i]]) low[x]=min(low[x],dfn[v[i]]);
if (low[x]==dfn[x])
{
int now=0;id++;
while (now!=x)
{
now=stack[top--];
vis[now]=0;
belong[now]=id;
}
}
}
bool check(double mid)
{
tot=0;memset(point,0,sizeof(point));
for (int i=0;i<=cnt;i++)
for (int j=i+1;j<=cnt;j++)
if (dcmp(dis(dian[i],dian[j])-mid)<0)
{
addline(i+1,(j^1)+1);
addline(j+1,(i^1)+1);
}
nn=0;top=0;id=0;
memset(belong,0,sizeof(belong)); memset(dfn,0,sizeof(dfn));
memset(low,0,sizeof(low));
for (int i=1;i<=cnt+1;i++)
if (!dfn[i]) tarjan(i);
for (int i=0;i<=cnt;i+=2)
if (belong[i+1]==belong[(i^1)+1]) return 0;
return 1;
}
int main()
{
int n;
while (~scanf("%d",&n))
{
double l,r;cnt=-1;
for (int i=1;i<=n;i++)
{
scanf("%lf%lf",&l,&r);
dian[++cnt].x=l; dian[cnt].y=r;
scanf("%lf%lf",&l,&r);
dian[++cnt].x=l; dian[cnt].y=r;
}
l=0;r=20000;
while (dcmp(r-l))
{
double mid=(l+r)/2;
if (check(mid)) l=mid;
else r=mid;
}
printf("%.2lf\n",l/2);
}
}
普及向:
一个很优秀的up
这里建图的四个模型很棒
模型一:两者(A,B)不能同时取
那么选择了A就只能选择B’,选择了B就只能选择A’
连边A→B’,B→A’
模型二:两者(A,B)不能同时不取
那么选择了A’就只能选择B,选择了B’就只能选择A
连边A’→B,B’→A
模型三:两者(A,B)要么都取,要么都不取
那么选择了A,就只能选择B,选择了B就只能选择A,选择了A’就只能选择B’,选择了B’就只能选择A’
连边A→B,B→A,A’→B’,B’→A’
模型四:两者(A,A’)必取A
那么,那么,该怎么说呢?先说连边吧。
连边A’→A