[BZOJ1492][NOI2007]货币兑换Cash(斜率优化dp+splay|cdq分治维护凸包)

33 篇文章 0 订阅
16 篇文章 0 订阅

题目:

我是超链接

题解:

f[i]表示第i天最多能获得多少钱,那么f[0]=s
题目中有提示说要不全部买入要不全部卖出,其实比较好理解,因为能赚钱一定要尽量赚
首先考虑一个问题,如果某天赚到的钱知道了,能换成A券的数量a和能换成B券的数量b就确定了
a/b=rate[i]
a*A[i]+b*B[i]=f[i](A[i],B[i]表示第i天两种金券的价值)
那就考虑已知f[1..i-1]如何求f[i],我们可以枚举最后持有金券的是哪一天,通过这一天的钱数f[j],我们可以算出持有的金券a,b,则:
f[i]=a*A[i]+b*B[i];
这是个n^2的啊,如何优化呢?
b=-A[i]/B[i]*a+f[i]/B[i],可以看成是一个以a为自变量,b为因变量的直线方程
当求解f[i]的时候,A[i]和B[i]都是确定的,f[i]最大就是截距最大
a和b作为已经求出来的决策点,是已知的
相当于有一条斜率固定的直线去卡平面上的一些点,求能得到的最大截距
显然答案一定在上凸壳上,可是斜率什么的都是不单调的,点也是随便往里加的

splay维护凸包

那么对于每一个求出来的f(j),我们计算出来a和b,然后将点(a,b)插入平面,用splay维护凸包,然后每一次查询f(i)的时候就在凸包上二分一个将直线的斜率分开的点就行了
挖坑等计算几何

cdq分治

可以发现影响都是左边对右边的,有要求用这种数据结构来维护,考虑一下cdq分治吧
关键词:时间,斜率,对于已经查询过去的还有横坐标(a)
我们需要实现一个Solve(l,r)过程,让它可以求出f[l]…f[r]的所有值
仍然考虑从中间把序列分成两半,用左边的去更新右边的。
先调用Solve(l,mid)求出l..mid的所有f值,求出作为决策点的两种金券数量(a,b)
然后对这些决策点求上凸壳
将右边的所有待更新点按照直线斜率-A[i]/B[i]排序,这样卡的点一定是按照x坐标递增的,只需要一个指针就可以维护了,按照单调性在凸包上扫一遍
然后调用Solve(mid+1,r)
关于这个分治其实有一个小技巧,因为我们想要的是左边按照a排好序,右边按照k排好序,整体是时间序,这样直接分治不免要有sort的过程
但如果我们全部按照k排好序,在进入过程之前按照时间分左右排一下,在全部结束过程之后再按照a排序(因为ta都用完了只能成为别人的左边),这样就会免去sort,全部都是归并

#include <cmath>
#include <cstdio>
#include <iostream>
#include <algorithm>
using namespace std;
const double INF=1e9;
const int N=100005;
const double eps=1e-9;
struct hh{double A,B,rate,a,b,k;int id;}Q[N],jl[N];
double f[N];int stack[N],n;
int dcmp(double x)
{
    if (x<=eps && x>=-eps) return 0;
    return (x>0)?1:-1;
}
double getk(hh a,hh b)
{
    if (dcmp(a.a-b.a)==0) return INF;
    return (a.b-b.b)/(a.a-b.a);
}
void merge(int l,int r)
{
    int mid=(l+r)>>1,t1=l,t2=mid+1;
    for (int i=l;i<=r;i++)
      if ((t1<=mid && dcmp(Q[t1].a-Q[t2].a)<0) || t2>r) jl[i]=Q[t1++];
      else jl[i]=Q[t2++];
    for (int i=l;i<=r;i++) Q[i]=jl[i];
}
void cdq(int l,int r)
{
    if (l==r)
    {
        f[l]=max(f[l],f[l-1]);
        Q[l].b=f[l]/(Q[l].rate*Q[l].A+Q[l].B); Q[l].a=Q[l].b*Q[l].rate;
        return;
    }
    int mid=(l+r)>>1,t1=l,t2=mid+1,top=0;

    for (int i=l;i<=r;i++)
      if (Q[i].id<=mid) jl[t1++]=Q[i];
      else jl[t2++]=Q[i];
    for (int i=l;i<=r;i++) Q[i]=jl[i];
    //按照时间分开,此时右边已经是想要的形式,左边会在cdq分治里完成  
    cdq(l,mid); 
    for (int i=l;i<=mid;i++)
    {
        while (top>1 && dcmp(getk(Q[stack[top]],Q[i]) - getk(Q[stack[top-1]],Q[stack[top]]))>=0) top--;
        stack[++top]=i;
    }
    for (int i=mid+1;i<=r;i++)
    {
        while (top>1 && dcmp(getk(Q[stack[top]],Q[stack[top-1]]) - jl[i].k)<0) top--;
        int j=stack[top];
        f[jl[i].id]=max(f[jl[i].id],Q[j].a*jl[i].A+Q[j].b*jl[i].B);
    }
    cdq(mid+1,r); merge(l,r);//用完的用a排好 
}
int cmp(hh a,hh b){return a.k<b.k;}
int main()
{
    scanf("%d%lf",&n,&f[0]);
    for (int i=1;i<=n;i++)
    {
        scanf("%lf%lf%lf",&Q[i].A,&Q[i].B,&Q[i].rate);
        Q[i].k=-Q[i].A/Q[i].B; Q[i].id=i;
    }
    sort(Q+1,Q+n+1,cmp);
    cdq(1,n);
    printf("%.3lf",f[n]);
}
  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: bzoj[1597][usaco2008 mar]土地购买 斜率优化 这道题是一道经典的斜率优化题目,需要用到单调队列的思想。 首先,我们可以将题目中的式子进行变形,得到: f[i] = f[j] + (sum[i] - sum[j] - m) ^ 2 + k 其中,sum[i] 表示前缀和,m 和 k 都是常数。 我们可以将式子中的 sum[i] 和 k 看作常数,那么我们需要优化的就是 (sum[i] - sum[j] - m) ^ 2 这一项。 我们可以将其展开,得到: (sum[i] - sum[j] - m) ^ 2 = sum[i] ^ 2 - 2 * sum[i] * (sum[j] + m) + (sum[j] + m) ^ 2 我们可以将其看作一个二次函数,其中 a = 1,b = -2 * (sum[j] + m),c = (sum[j] + m) ^ 2。 我们可以发现,当 j < k 时,如果 f[j] + a * sum[j] + b * sum[j] <= f[k] + a * sum[k] + b * sum[k],那么 j 就不可能是最优决策点,因为 k 比 j 更优。 因此,我们可以用单调队列来维护决策点。具体来说,我们可以维护一个单调递增的队列 q,其中 q[i] 表示第 i 个决策点的下标。每次加入一个新的决策点 i 时,我们可以将队列尾部的决策点 j 弹出,直到队列为空或者 f[j] + a * sum[j] + b * sum[j] <= f[i] + a * sum[i] + b * sum[i]。然后,我们将 i 加入队列尾部。 最后,队列头部的决策点就是最优决策点。我们可以用类似于双指针的方法来维护队列头部的决策点是否在当前区间内,如果不在,就弹出队列头部。 时间复杂度为 O(n)。 ### 回答2: 这道题目属于斜率优化的经典题目,难度较高,需要掌握一定的数学知识。 首先,我们可以将题目中的“最大利润”转化为“最小成本”,这样问题就变成了找到一个方案,使得购买土地的成本最小。 接着,我们考虑如何用斜率优化来解决这个问题。我们可以定义一个函数f(i),表示前i块土地的最小成本。 显然,f(1)=0,因为不需要购买任何土地。 对于f(i),它可以由f(j)+b(i)×a(j+1)得到,其中j<i,a(j+1)表示第j+1块土地的面积,b(i)表示第i块土地的价格。这个式子的含义是,我们现在要购买第i块土地,那么前面的土地(即前j块)就都要买,所以f(j)表示前j块土地的最小成本,b(i)×a(j+1)表示购买第i块土地的成本。 那么,我们可以得到递推公式: f(i)=min{f(j)+b(i)×a(j+1)},其中j<i。 这个公式看起来很简单,但是要注意的是,当b(i)×a(j+1)的斜率相同时,我们需要取其中面积较小的土地,因为它的价格更低。因此,我们需要对斜率进行排序,并在递推中用单调队列维护斜率相等的情况下面积最小的土地。 最终,f(n)就是题目所求的最小成本。 总之,这道题目需要深入理解斜率优化算法的原理和实现方式,并且需要注意细节处理,如果能够顺利地解决这个问题,那么对于斜率优化算法的掌握程度就有了很大的提升。 ### 回答3: 土地购买问题可以采用斜率优化算法来解决。这个问题可以转化为一个单调队列的问题。 首先,我们需要对土地价格按照边长从小到大排序。然后,对于每块土地,我们需要求出它的贡献。设 $f_i$ 表示前 $i$ 块土地连续的最小代价。 设当前处理到第 $i$ 块土地,已经求出了前 $j$ 块土地的最小代价 $f_j$。那么我们可以得到下面这个式子: $$ f_i=\min\limits_{j=1}^{i-1}\{f_j+(S_i-S_j)^2+P\} $$ 式子中,$S_i$ 表示前 $i$ 块土地的边长和,$P$ 表示额外购买土地的代价。首先,不考虑额外购买土地,我们可以使用动态规划来求出 $f_i$。但是,考虑到额外购买土地的代价 $P$ 是一个固定值,我们可以考虑将它与某一块土地的代价合并起来,这样就可以使用斜率优化技术来优化动态规划算法。 我们定义一个决策点 $j$,表示我们当前要处理第 $i$ 块土地时,已经处理过 $j$ 块土地,并将第 $j+1$ 块土地到第 $i$ 块土地购买,所需的最小代价。我们假设 $S_i>S_j$,则可以得到下面这个式子: $$ f_i=\min\limits_{j=1}^{i-1}\{f_j+(S_i-S_j)^2+P\} $$ 将它整理成斜率截距式可以得到: $$ y=kx+b $$ 其中 $k=(S_j)^2-2S_iS_j$,$b=f_j+(S_i)^2+P-S_j^2$,$x=S_j$,$y=f_j+(S_j-S_i)^2-S_j^2$。我们发现 $k$ 是一个单调递减的函数,因此我们可以使用一个单调队列来维护所有可能成为决策点的点。对于每个点,我们计算函数 $y$ 的值并将它们加入队列,然后取队头元素的值作为 $f_i$。 综上所述,我们可以使用斜率优化技术来解决土地购买问题,时间复杂度为 $O(n)$。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值