bzoj1492 货币兑换cash dp斜率优化+splay/cdq分治

斜率优化

首先,由于如果在i天买在j天卖有利可图,那么最优方法就是在i天花完钱在j天卖完。我们令 f i f_i fi为第i天可以得到的最多钱数,然后可以先列方程求出花完钱在第j天得到的两种金券数 x j = f j R j a j R j + b j x_j=\frac{f_jR_j}{a_jR_j+b_j} xj=ajRj+bjfjRj y j = f j a j R j + b j y_j=\frac{f_j}{a_jR_j+b_j} yj=ajRj+bjfj,然后得到状态转移方程: f i = x j a i + y j b i f_i=x_ja_i+y_jb_i fi=xjai+yjbi
将方程稍微变形成直线斜截式方程: y j = − a i x j b i + f i b i y_j=-\frac{a_ix_j}{b_i}+\frac{f_i}{b_i} yj=biaixj+bifi,可以知道,对于平面上众多的点 ( x j , y j ) (x_j,y_j) (xj,yj),我们每次用一条斜率为 − a i b i -\frac{a_i}{b_i} biai的直线去切它们中的一个,可以求得最大截距的点即为最优决策。
如何求得最大截距呢?以下我们将斜率为 − a i b i -\frac{a_i}{b_i} biai的直线称为当前直线。
现在我们维护点之间的一个凸包,如果对于点j,其左边的线斜率小于当前直线,那么显然把当前直线移到左边的点截距更大(建议自己画图理解)。如果其右边的线斜率大于当前直线,那么将其右移更优。
于是就有两种维护方式:

splay维护

我们需要优化,那么就需要排除不可能状态。可以发现,在点集中,如果一个点在凸包内部,那么这个点就是不可能是最优决策的点,因为其上一定有一个点,那么把当前直线上移可以获得更大截距。所以我们可以排除这些决策.
维护lk:点x凸包左边那条线的斜率,rk:右边那条线的。
splay按照x排序,寻找最优决策的方法见上,而添加新点的方法:
首先将新点x旋转到根。以寻找其左边最后一个可以与其构成凸包的点为例。对于当前点t,如果t左边斜率大于了直线tx的斜率,那么如果t的右边还有不在凸包内的节点,用tx的连线就不能构成凸包,所以应该继续往右找点。否则,继续往左找点。
然后,删掉在凸包里的点。
找右边第一个可以与其构成凸包的点同理。
最后,如果发现这个点本来就在旧的凸包里面,直接将其删除。(即 l k x lk_x lkx大于 r k x rk_x rkx

#include<bits/stdc++.h>
using namespace std;
#define db double
#define eps 1e-9//一定要注意精度
#define inf 1e9
const int N=100005;
int n,rt,sc,f[N],son[N][2];
db dp[N],A[N],B[N],R[N],lk[N],rk[N],X[N],Y[N];//lk:凸包点x左线斜率,rk:右线斜率
int is(int x) {return son[f[x]][1]==x;}
void spin(int x,int &mb) {
	int fa=f[x],g=f[fa],t=is(x);
	if(fa==mb) mb=x;
	else son[g][is(fa)]=x;
	f[fa]=x,f[x]=g,f[son[x][t^1]]=fa;
	son[fa][t]=son[x][t^1],son[x][t^1]=fa;
}
void splay(int x,int &mb) {
	while(x!=mb) {
		if(f[x]!=mb) {
			if(is(x)^is(f[x])) spin(x,mb);
			else spin(f[x],mb);
		}
		spin(x,mb);
	}
}
int find(int x,db num) {//寻找最优解
	if(!x) return 0;
	if(lk[x]+eps>=num&&rk[x]<=num+eps) return x;
	else if(lk[x]<num+eps) return find(son[x][0],num);
	else return find(son[x][1],num);
}
db getk(int a,int b) {//获得斜率
	if(X[a]-X[b]<eps&&X[a]-X[b]>-eps) return -inf;
	return (Y[b]-Y[a])/(X[b]-X[a]);
}
int pre(int x) {//寻找左边最后一个与x可以构成凸包的点
	int y=son[x][0],re=y;
	while(y) {
		if(lk[y]+eps>=getk(y,x)) re=y,y=son[y][1];
		else y=son[y][0];
	}
	return re;
}
int nxt(int x) {//寻找右边第一个与x可以构成凸包的点
	int y=son[x][1],re=y;
	while(y) {
		if(rk[y]<=getk(x,y)+eps) re=y,y=son[y][0];
		else y=son[y][1];
	}
	return re;
}
void newjd(int x) {
	splay(x,rt);
	if(son[x][0]) {
		int kl=pre(x);
		splay(kl,son[x][0]),son[kl][1]=0;
		lk[x]=rk[kl]=getk(kl,x);
	}
	else lk[x]=inf;//请勿往左
	if(son[x][1]) {
		int kl=nxt(x);
		splay(kl,son[x][1]),son[kl][0]=0;
		rk[x]=lk[kl]=getk(x,kl);
	}
	else rk[x]=-inf;//请勿往右
	if(lk[x]<=rk[x]+eps) {//在原凸包内部,直接删除该点
		rt=son[x][0],son[rt][1]=son[x][1],f[son[x][1]]=rt,f[rt]=0;
		lk[rt]=rk[son[rt][1]]=getk(rt,son[rt][1]);
	}
}
void ins(int &x,int las,int bh) {
	if(!x) {x=bh,f[x]=las;return;}
	if(X[bh]<=X[x]+eps) ins(son[x][0],x,bh);
	else ins(son[x][1],x,bh);
}
int main()
{
	scanf("%d%lf",&n,&dp[0]);
	for(int i=1;i<=n;++i) {
		scanf("%lf%lf%lf",&A[i],&B[i],&R[i]);
		int j=find(rt,-A[i]/B[i]);
		dp[i]=max(dp[i-1],X[j]*A[i]+Y[j]*B[i]);
		Y[i]=dp[i]/(A[i]*R[i]+B[i]),X[i]=Y[i]*R[i];
		ins(rt,0,i),newjd(i);
	}
	printf("%.3lf\n",dp[n]);
	return 0;
}

CDQ分治维护

关于CDQ分治
我们可以对决策的时间进行二分,对于左半边区间,首先求出它们的dp值,右半边区间维持 k i = − a i b i k_i=-\frac{a_i}{b_i} ki=biai的有序,左半边区间维持 x i x_i xi的有序。
我们可以开一个栈来维护左半边区间的斜率单调递减的凸包。
对于右半边区间,由于k值排了序,所以可以O(n)查询。查询方法就是关于斜率优化的分析的倒数第二段的内容。

#include<bits/stdc++.h>
using namespace std;
#define db double
#define inf 1e9
#define eps 1e-9
const int N=100005;
int n,s[N];db dp[N];
struct node{db k,x,y,a,b,r;int id;}Q[N],kl[N];
db getk(int i,int j) {
	if(fabs(Q[i].x-Q[j].x)<=eps) return inf;
	return (Q[j].y-Q[i].y)/(Q[j].x-Q[i].x);
}
void merge(int l,int r,int mid) {//归并排序
	int t1=l,t2=mid+1;
	for(int i=l;i<=r;++i)
		if(t1<=mid&&(t2>r||Q[t1].x<Q[t2].x+eps)) kl[i]=Q[t1],++t1;
		else kl[i]=Q[t2],++t2;
	for(int i=l;i<=r;++i) Q[i]=kl[i];
}
void cdq(int l,int r) {
	if(l==r) {//那么在l之前的所有询问都已经处理完毕,可以更新l的答案了
		dp[l]=max(dp[l],dp[l-1]);
		Q[l].y=dp[l]/(Q[l].a*Q[l].r+Q[l].b),Q[l].x=Q[l].y*Q[l].r;
		return;
	}
	int mid=(l+r)>>1,t1=l-1,t2=mid,top=0;
	for(int i=l;i<=r;++i)//把前mid个询问放在左边,后mid个放在右边
		if(Q[i].id<=mid) kl[++t1]=Q[i];
		else kl[++t2]=Q[i];
	for(int i=l;i<=r;++i) Q[i]=kl[i];
	cdq(l,mid);//递归处理左边
	for(int i=l;i<=mid;++i) {//维护斜率递减的凸包
		while(top>=2&&getk(s[top],i)+eps>getk(s[top-1],s[top])) --top;
		s[++top]=i;
	}
	for(int i=mid+1;i<=r;++i) {//处理右边的询问
		while(top>=2&&getk(s[top-1],s[top])<=Q[i].k+eps) --top;
		int j=s[top];
		dp[Q[i].id]=max(dp[Q[i].id],Q[j].x*Q[i].a+Q[j].y*Q[i].b);
	}
	cdq(mid+1,r),merge(l,r,mid);//递归处理右边后,按照x值为关键字归并排序
}
int cmp1(node t1,node t2) {return t1.k<t2.k;}
int main() 
{
	scanf("%d%lf",&n,&dp[0]);
	for(int i=1;i<=n;++i) {
		scanf("%lf%lf%lf",&Q[i].a,&Q[i].b,&Q[i].r);
		Q[i].k=-Q[i].a/Q[i].b,Q[i].id=i;
	}
	sort(Q+1,Q+1+n,cmp1),cdq(1,n);
	printf("%.3lf\n",dp[n]);
	return 0;
}
  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: bzoj[1597][usaco2008 mar]土地购买 斜率优化 这道题是一道经典的斜率优化题目,需要用到单调队列的思想。 首先,我们可以将题目中的式子进行变形,得到: f[i] = f[j] + (sum[i] - sum[j] - m) ^ 2 + k 其中,sum[i] 表示前缀和,m 和 k 都是常数。 我们可以将式子中的 sum[i] 和 k 看作常数,那么我们需要优化的就是 (sum[i] - sum[j] - m) ^ 2 这一项。 我们可以将其展开,得到: (sum[i] - sum[j] - m) ^ 2 = sum[i] ^ 2 - 2 * sum[i] * (sum[j] + m) + (sum[j] + m) ^ 2 我们可以将其看作一个二次函数,其中 a = 1,b = -2 * (sum[j] + m),c = (sum[j] + m) ^ 2。 我们可以发现,当 j < k 时,如果 f[j] + a * sum[j] + b * sum[j] <= f[k] + a * sum[k] + b * sum[k],那么 j 就不可能是最优决策点,因为 k 比 j 更优。 因此,我们可以用单调队列来维护决策点。具体来说,我们可以维护一个单调递增的队列 q,其中 q[i] 表示第 i 个决策点的下标。每次加入一个新的决策点 i 时,我们可以将队列尾部的决策点 j 弹出,直到队列为空或者 f[j] + a * sum[j] + b * sum[j] <= f[i] + a * sum[i] + b * sum[i]。然后,我们将 i 加入队列尾部。 最后,队列头部的决策点就是最优决策点。我们可以用类似于双指针的方法来维护队列头部的决策点是否在当前区间内,如果不在,就弹出队列头部。 时间复杂度为 O(n)。 ### 回答2: 这道题目属于斜率优化的经典题目,难度较高,需要掌握一定的数学知识。 首先,我们可以将题目中的“最大利润”转化为“最小成本”,这样问题就变成了找到一个方案,使得购买土地的成本最小。 接着,我们考虑如何用斜率优化来解决这个问题。我们可以定义一个函数f(i),表示前i块土地的最小成本。 显然,f(1)=0,因为不需要购买任何土地。 对于f(i),它可以由f(j)+b(i)×a(j+1)得到,其中j<i,a(j+1)表示第j+1块土地的面积,b(i)表示第i块土地的价格。这个式子的含义是,我们现在要购买第i块土地,那么前面的土地(即前j块)就都要买,所以f(j)表示前j块土地的最小成本,b(i)×a(j+1)表示购买第i块土地的成本。 那么,我们可以得到递推公式: f(i)=min{f(j)+b(i)×a(j+1)},其中j<i。 这个公式看起来很简单,但是要注意的是,当b(i)×a(j+1)的斜率相同时,我们需要取其中面积较小的土地,因为它的价格更低。因此,我们需要对斜率进行排序,并在递推中用单调队列维护斜率相等的情况下面积最小的土地。 最终,f(n)就是题目所求的最小成本。 总之,这道题目需要深入理解斜率优化算法的原理和实现方式,并且需要注意细节处理,如果能够顺利地解决这个问题,那么对于斜率优化算法的掌握程度就有了很大的提升。 ### 回答3: 土地购买问题可以采用斜率优化算法来解决。这个问题可以转化为一个单调队列的问题。 首先,我们需要对土地价格按照边长从小到大排序。然后,对于每块土地,我们需要求出它的贡献。设 $f_i$ 表示前 $i$ 块土地连续的最小代价。 设当前处理到第 $i$ 块土地,已经求出了前 $j$ 块土地的最小代价 $f_j$。那么我们可以得到下面这个式子: $$ f_i=\min\limits_{j=1}^{i-1}\{f_j+(S_i-S_j)^2+P\} $$ 式子中,$S_i$ 表示前 $i$ 块土地的边长和,$P$ 表示额外购买土地的代价。首先,不考虑额外购买土地,我们可以使用动态规划来求出 $f_i$。但是,考虑到额外购买土地的代价 $P$ 是一个固定值,我们可以考虑将它与某一块土地的代价合并起来,这样就可以使用斜率优化技术来优化动态规划算法。 我们定义一个决策点 $j$,表示我们当前要处理第 $i$ 块土地时,已经处理过 $j$ 块土地,并将第 $j+1$ 块土地到第 $i$ 块土地购买,所需的最小代价。我们假设 $S_i>S_j$,则可以得到下面这个式子: $$ f_i=\min\limits_{j=1}^{i-1}\{f_j+(S_i-S_j)^2+P\} $$ 将它整理成斜率截距式可以得到: $$ y=kx+b $$ 其中 $k=(S_j)^2-2S_iS_j$,$b=f_j+(S_i)^2+P-S_j^2$,$x=S_j$,$y=f_j+(S_j-S_i)^2-S_j^2$。我们发现 $k$ 是一个单调递减的函数,因此我们可以使用一个单调队列来维护所有可能成为决策点的点。对于每个点,我们计算函数 $y$ 的值并将它们加入队列,然后取队头元素的值作为 $f_i$。 综上所述,我们可以使用斜率优化技术来解决土地购买问题,时间复杂度为 $O(n)$。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值