即插即用的网络插件

本文探讨了深度学习中几种关键模型和技术的应用,包括STN的空间变换能力、ASPP的多尺度处理、Non-local及SE注意力机制的作用,以及CoordConv的独特贡献。同时介绍了GhostNet如何减少计算复杂度,BlurPool提升模型鲁棒性,和RFB网络在目标检测中的应用。
摘要由CSDN通过智能技术生成

转载自 极市平台

原文地址

这里记录一下用于下次自己用的时候快速上手

STN:空间阈的变换,能够学习并增强网络的旋转不变性和平移不变性

ASPP:多尺度空洞卷积以提高感受野,使用空间金字塔进行尺度融合

Non-local : 空间注意力,有些类似于self-attention的操作

SE :通道域注意力

CBAM:通道域+空间域注意力,看伪代码能看的懂

DCN:——

coordconv:

这篇文章太有意思了,看起来对文章要实现的东西有很多争论的样子,我得吃吃瓜。

这篇文章之所以有趣是因为,这篇说这个工作是没有意义的,用代码直接code了从笛卡尔坐标系到one-hot该怎么做。

这篇论文的逻辑已经不能更混乱了....

文章中的数据集包含了三个方面的内容,(x,y)坐标,1张只有1个白点的图像(one-hot),1张有1个白色方块的图像。

文中做了两个实验,首先是输入x,y的坐标,看能不能训练出一个可以在图片对应位置上填充白色方块的模型,答案是传统卷积不行。

于是又进一步的,看看能不能训练出一个模型,输入xy坐标,输出一个one-hot编码的图像,也不行。

说这个文章混乱是因为,数据集的建立在第一章(还告诉这个代码是怎么写的,谁会关心这个事。。。),提出模型的部分在第二章,具体观察实验现象(就是解释为什么提出了这个模型,数据集到底是怎么用起来的)放在第三章。

具体模型的部分,说coordconv也能转换到传统卷积上,因为ij坐标图是concatenate到原特征图上的,所以只要ij坐标图对应位置的卷积权重为0,网络就退化为了传统卷积。

恩。。。先别太看了,以后看谁用上了再回来补课吧。

GhostNet

作者首先发现尽管mobilenet 1*1的卷积Flops计算量还是很大,他提取了每一层的特征图可视化之后,发现有很多相似的特征图可以用“小扳手互相转换”,这个小扳手可以实是线性卷积层

BlurPool

CNN的输入只要有一点小小的变化,输出就可能天差地别,极易收到对抗攻击。作者首先分析了各种降低分辨率的网络层对平移不变性的影响,然后提出将maxpool分解为两个步骤。

文章有关平移不变性和平移相等性的解释还是很nice的!

RFB

Receptive Field Block

Receptive Field Block Net for Accurate and Fast Object Detection

inception + ASPP

inception : 4种路径从不同层面抽取信息,然后在输出通道合并,

ASFF

自适应的FPN融合手段,我觉得会导致更多的计算量...

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值