转载自 极市平台
这里记录一下用于下次自己用的时候快速上手
STN:空间阈的变换,能够学习并增强网络的旋转不变性和平移不变性
ASPP:多尺度空洞卷积以提高感受野,使用空间金字塔进行尺度融合
Non-local : 空间注意力,有些类似于self-attention的操作
SE :通道域注意力
CBAM:通道域+空间域注意力,看伪代码能看的懂
DCN:——
这篇文章太有意思了,看起来对文章要实现的东西有很多争论的样子,我得吃吃瓜。
这篇文章之所以有趣是因为,这篇说这个工作是没有意义的,用代码直接code了从笛卡尔坐标系到one-hot该怎么做。
这篇论文的逻辑已经不能更混乱了....
文章中的数据集包含了三个方面的内容,(x,y)坐标,1张只有1个白点的图像(one-hot),1张有1个白色方块的图像。
文中做了两个实验,首先是输入x,y的坐标,看能不能训练出一个可以在图片对应位置上填充白色方块的模型,答案是传统卷积不行。
于是又进一步的,看看能不能训练出一个模型,输入xy坐标,输出一个one-hot编码的图像,也不行。
说这个文章混乱是因为,数据集的建立在第一章(还告诉这个代码是怎么写的,谁会关心这个事。。。),提出模型的部分在第二章,具体观察实验现象(就是解释为什么提出了这个模型,数据集到底是怎么用起来的)放在第三章。
具体模型的部分,说coordconv也能转换到传统卷积上,因为ij坐标图是concatenate到原特征图上的,所以只要ij坐标图对应位置的卷积权重为0,网络就退化为了传统卷积。
恩。。。先别太看了,以后看谁用上了再回来补课吧。
作者首先发现尽管mobilenet 1*1的卷积Flops计算量还是很大,他提取了每一层的特征图可视化之后,发现有很多相似的特征图可以用“小扳手互相转换”,这个小扳手可以实是线性卷积层
CNN的输入只要有一点小小的变化,输出就可能天差地别,极易收到对抗攻击。作者首先分析了各种降低分辨率的网络层对平移不变性的影响,然后提出将maxpool分解为两个步骤。
文章有关平移不变性和平移相等性的解释还是很nice的!
RFB
Receptive Field Block
Receptive Field Block Net for Accurate and Fast Object Detection
inception + ASPP
inception : 4种路径从不同层面抽取信息,然后在输出通道合并,
ASFF
自适应的FPN融合手段,我觉得会导致更多的计算量...