300. Longest Increasing Subsequence
题解1: 直接DP(Accepted)
LIS算是动态规划中的经典题目了,在笔者看到的每一个讲解动态规划的题目中都会有此题的出现。在这里简单整理一下思路和转移方程。
根据之前的原则,DP中求什么就设什么。我们设dp[i]
是在0~i上的LIS的长度。我们现在需要考虑初始条件和转移方程。
初始条件:
在最开始时,dp[i] = 1
代表序列中只含有自身。
转移方程:
个人本问题的关键在于对于循环和大小关系的确定:我们对于任意的一个i,需要从0~i-1
判断每个nums[i],nums[j]
的大小关系。从而确定dp[i]的值,通过两者之间的大小关系我们可以得出:
若nums[i] > nums[j]
,则dp[i] = dp[j]+1
然后对于j从0~i-1,我们对上述式子求最大值,便可得出转移方程如下:
dp[i] = max(dp[i],dp[j]+1)
class Solution {
public:
int lengthOfLIS(vector<int>& nums) {
int res = 0;
vector<int> dp(nums.size(),1);
for(int i = 0; i < nums.size(); i++){
int temp = 0;
for(int j = 0; j < i; j++){
if(nums[i] > nums[j])
temp = max(dp[j],temp);
}
dp[i] = temp + 1;
res = max (res, dp[i]);
}
return res;
}
};
题解2:O(nlogn)解法
先占个坑,等研究明白再回来写。