[Leetcode]300. Longest Increasing Subsequence

本文详细介绍了经典的最长递增子序列问题及其两种解决方法:一种是使用动态规划实现的O(n^2)解法;另一种是更高效的O(nlogn)解法。文章通过代码示例解释了如何计算给定整数序列中最长递增子序列的长度。
摘要由CSDN通过智能技术生成

300. Longest Increasing Subsequence

原题目链接

题解1: 直接DP(Accepted)

LIS算是动态规划中的经典题目了,在笔者看到的每一个讲解动态规划的题目中都会有此题的出现。在这里简单整理一下思路和转移方程。
根据之前的原则,DP中求什么就设什么。我们设dp[i]是在0~i上的LIS的长度。我们现在需要考虑初始条件和转移方程。

初始条件:

在最开始时,dp[i] = 1代表序列中只含有自身。

转移方程:

个人本问题的关键在于对于循环和大小关系的确定:我们对于任意的一个i,需要从0~i-1判断每个nums[i],nums[j]的大小关系。从而确定dp[i]的值,通过两者之间的大小关系我们可以得出:
nums[i] > nums[j],则dp[i] = dp[j]+1
然后对于j从0~i-1,我们对上述式子求最大值,便可得出转移方程如下:
dp[i] = max(dp[i],dp[j]+1)

class Solution {
public:
    int lengthOfLIS(vector<int>& nums) {
        int res = 0;
        vector<int> dp(nums.size(),1);
        for(int i = 0; i < nums.size(); i++){
            int temp = 0;
              for(int j = 0; j < i; j++){
                if(nums[i] > nums[j])
                    temp = max(dp[j],temp);
            }
            dp[i] = temp + 1;
            res = max (res, dp[i]);
        }  
        return res;
    }

};

题解2:O(nlogn)解法

先占个坑,等研究明白再回来写。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值