原题网址:https://leetcode.com/problems/longest-increasing-subsequence/
Given an unsorted array of integers, find the length of longest increasing subsequence.
For example,
Given [10, 9, 2, 5, 3, 7, 101, 18],
The longest increasing subsequence is [2, 3, 7, 101], therefore the length is 4. Note that there may be more than one LIS combination, it is only necessary for you to return the length.
Your algorithm should run in O(n2) complexity.
Follow up: Could you improve it to O(n log n) time complexity?
方法一:使用TreeSet,找出比当前值小的所有值,逐一更新最长子序列长度。
public class Solution {
public int lengthOfLIS(int[] nums) {
if (nums == null || nums.length == 0) return 0;
int max = 1;
TreeSet<Integer> ts = new TreeSet<>(new Comparator<Integer>() {
@Override
public int compare(Integer i1, Integer i2) {
return Integer.compare(nums[i1], nums[i2]);
}
});
int[] lens = new int[nums.length];
Arrays.fill(lens, 1);
for(int i=0; i<nums.length; i++) {
if (ts.contains(i)) ts.remove(i);
ts.add(i);
Set<Integer> heads = ts.headSet(i);
for(int head: heads) {
lens[i] = Math.max(lens[i], lens[head] + 1);
}
max = Math.max(max, lens[i]);
}
return max;
}
}方法二:动态规划。
public class Solution {
public int lengthOfLIS(int[] nums) {
if (nums == null || nums.length == 0) return 0;
int max = 1;
int[] lens = new int[nums.length];
Arrays.fill(lens, 1);
for(int i=1; i<nums.length; i++) {
for(int j=0; j<i; j++) {
if (nums[j]<nums[i]) lens[i] = Math.max(lens[i], lens[j]+1);
}
max = Math.max(max, lens[i]);
}
return max;
}
}方法三:维护一个单调递增子序列,它的关键原理在于,如果当前值小于单调递增子序列中的某个元素,则替换之,因为单调递增子序列能否增长,值取决于最后一个元素,替换内部的元素并不影响。这个方法我没有想出来,网上参考的。
public class Solution {
public int lengthOfLIS(int[] nums) {
int[] increasing = new int[nums.length];
int size = 0;
for(int i=0; i<nums.length; i++) {
int left=0, right=size-1;
while (left<=right) {
int m=(left+right)/2;
if (nums[i] > increasing[m]) left = m + 1;
else right = m - 1;
}
increasing[left] = nums[i];
if (left==size) size ++;
}
return size;
}
}

1315

被折叠的 条评论
为什么被折叠?



