决策树_理论

信息熵:

对于f(x)= -x * log2(x) 

x=np.linspace(0.1,0.9,100000)
y=-x*np.log2(x)
print(y.max())
p=np.where(y==y.max())
x[p[0]]

 f(x)= -x * log2(x) 的最值【0——1】;

0.5307378454024889
array([0.36788268])

 f(x)= -x * log2(x)-(1-x)*log2(1-x)【0——1】;x==0.5时,H(x)为1bit

信息熵,当各个p(xi)相等时H(x)最大;那么在【各个p(xi)相等】的条件下,n逐渐增大是什么样子

l=[]
for i in range(1,10001):
    z=1/i
    x=-z*np.log2(z)
    l.append(x*i)
plt.plot(l)
plt.xlabel("n")
plt.ylabel("H(x)")
plt.show()

 

条件熵:p(x)* H(x)

 

 

信息增益:未划分的信息熵【 减 】【条件熵】划分后各个区域的信息熵【乘】权重(该区域数量占比)                越大越好

 Gain(D,a)=H(D)-\sum_{v=1}^{V}\frac{|D^{^{v}}|}{|D|}H(D^{v})

ID3决策树:以信息增益为准则,划分属性        对取值数目较多的属性有所偏好【有可能该属性每个值各划分一个类,每个类一般一个样本,这样划分没有意义】

C4.5决策树:以信息增益为准则,划分属性        克服了ID3的偏好

Gain\_ratio(D,a)=\frac{Gain(D,a)}{-\sum_{v=1}^{V}\frac{|D^{v}|}{|D|}log_{2}\frac{|D^{v}|}{|D|}}

CART决策树:以基尼指数为准则;划分属性       类似于信息熵

p_{k},类别标记不一致的概率

Gini(D)=\sum_{k=1}^{|y|}\sum_{k^{'}\neq k}^{}p_{k}p_{k^{'}}=\sum_{k=1}^{|y|}p_{k}(1-p_{k})=1-\sum_{k=1}^{|y|}p_{k}^{2}

Gini\_index(D,a)=\sum_{v=1}^{V}\frac{|D^{v}|}{|D|}Gini(D^{v})

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

骑驴_找马

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值