本篇介绍快速排序算法,以及相应的时间空间复杂度求解。
首先介绍一下冒泡排序的时间复杂度: 对于n位的数列则有比较次数为 (n-1) + (n-2) + ... + 1 = n * (n - 1) / 2,这就得到了最大的比较次数而O(N^2)表示的是复杂度的数量级。举个例子来说,如果n = 10000,那么 n(n-1)/2 = (n^2 - n) / 2 = (100000000 - 10000) / 2,相对10^8来说,10000小的可以忽略不计了,所以总计算次数约为0.5 * N^2。用O(N^2)就表示了其数量级(忽略前面系数0.5)。在没有改进的情况下,冒泡排序的时间复杂度都是相同的,为O(N^2)。以下改进的方法可以使最佳情况时为O(n)。
快速排序的时间复杂度为:
T(n) <= cn + 2T(n/2) c是一个常数
<= cn + 2(cn/2+2T(n/4)) = 2cn+ 4T(n/4)
<= 2cn + 4(cn/4+ 2T(n/8)) = 3cn + 8T(n/8)
…… ……
<= cnlogn + nT(1) = O(nlogn) 其中cn 是一次划分所用的时间,c是一个常数
最坏的情况,每次划分都得到一个子序列,时间复杂度为:
T(n) = cn + T(n-1)
= cn + c(n-1) + T(n - 2) = 2cn -c + T(n-2)
= 2cn -c + c(n - 2) + T(n-3) = 3cn -3c + T(n-3)
……
= c[n(n+1)/2-1] + T(1) = O(n2)
快速排序的时间复杂度在平均情况下介于最佳与最差情况之间,假设每一次分割时,基准值处于最终排序好的位置的概率是一样的,基准值将数组分成长度为0 和 n-1,1 和 n-2,……的概率都是 1/n。在这种假设下,快速排序的平均时间复杂性为:
T(n) = cn + 1/n(T(k)+ T(n-k-1)) T(0) = c, T(1) = c
这是一个递推公式,T(k)和T(n-k-1)是指处理长度为 k 和 n-k-1 数组是快速排序算法所花费的时间, 根据公式所推算出来的时间为 O(nlogn)。因此快速排序的平均时间复杂性为O(nlogn)。
空间复杂度为:
快速排序需要栈空间来实现递归,如果数组按局等方式被分割时,则最大的递归深度为 log n,需要的栈空间为 O(log n)。最坏的情况下在递归的每一级上,数组分割成长度为0的左子数组和长度为 n - 1 的右数组。这种情况下,递归的深度就成为 n,需要的栈空间为 O(n)。
以下贴出快速排序的代码:
首先介绍一下冒泡排序的时间复杂度: 对于n位的数列则有比较次数为 (n-1) + (n-2) + ... + 1 = n * (n - 1) / 2,这就得到了最大的比较次数而O(N^2)表示的是复杂度的数量级。举个例子来说,如果n = 10000,那么 n(n-1)/2 = (n^2 - n) / 2 = (100000000 - 10000) / 2,相对10^8来说,10000小的可以忽略不计了,所以总计算次数约为0.5 * N^2。用O(N^2)就表示了其数量级(忽略前面系数0.5)。在没有改进的情况下,冒泡排序的时间复杂度都是相同的,为O(N^2)。以下改进的方法可以使最佳情况时为O(n)。
public void bubbleSort(int arr[]) {
boolean didSwap;
for(int i = 0, len = arr.length; i < len - 1; i++) {
didSwap = false;
for(int j = 0; j < len - i - 1; j++) {
if(arr[j + 1] < arr[j]) {
swap(arr, j, j + 1);
didSwap = true;
}
}
if(didSwap == false)
return;
}
}
快速排序的基本思想如下:首先在要排序的序列 a 中选取一个中轴值,而后将序列分成两个部分,其中左边的部分 b 中的元素均小于或者等于 中轴值,右边的部分 c 的元素 均大于或者等于中轴值,而后通过递归调用快速排序的过程分别对两个部分进行排序,最后将两部分产生的结果合并即可得到最后的排序序列。 为了实现一次划分,我们可以从数组(假定数据是存在数组中)的两端移动下标,必要时交换记录,直到数组两端的下标相遇为止。为此,我们附设两个指针(下角标)i 和 j, 通过 j 从当前序列的有段向左扫描,越过不小于基准值的记录。当遇到小于基准值的记录时,扫描停止。通过 i 从当前序列的左端向右扫描,越过小于基准值的记录。当遇到不小于基准值的记录时,扫描停止。交换两个方向扫描停止的记录 a[j] 与 a[i]。 然后,继续扫描,直至 i 与 j 相遇为止。扫描和交换的过程结束。这是 i 左边的记录的关键字值都小于基准值,右边的记录的关键字值都不小于基准值。
快速排序的时间复杂度为:
T(n) <= cn + 2T(n/2) c是一个常数
<= cn + 2(cn/2+2T(n/4)) = 2cn+ 4T(n/4)
<= 2cn + 4(cn/4+ 2T(n/8)) = 3cn + 8T(n/8)
…… ……
<= cnlogn + nT(1) = O(nlogn) 其中cn 是一次划分所用的时间,c是一个常数
最坏的情况,每次划分都得到一个子序列,时间复杂度为:
T(n) = cn + T(n-1)
= cn + c(n-1) + T(n - 2) = 2cn -c + T(n-2)
= 2cn -c + c(n - 2) + T(n-3) = 3cn -3c + T(n-3)
……
= c[n(n+1)/2-1] + T(1) = O(n2)
快速排序的时间复杂度在平均情况下介于最佳与最差情况之间,假设每一次分割时,基准值处于最终排序好的位置的概率是一样的,基准值将数组分成长度为0 和 n-1,1 和 n-2,……的概率都是 1/n。在这种假设下,快速排序的平均时间复杂性为:
T(n) = cn + 1/n(T(k)+ T(n-k-1)) T(0) = c, T(1) = c
这是一个递推公式,T(k)和T(n-k-1)是指处理长度为 k 和 n-k-1 数组是快速排序算法所花费的时间, 根据公式所推算出来的时间为 O(nlogn)。因此快速排序的平均时间复杂性为O(nlogn)。
空间复杂度为:
快速排序需要栈空间来实现递归,如果数组按局等方式被分割时,则最大的递归深度为 log n,需要的栈空间为 O(log n)。最坏的情况下在递归的每一级上,数组分割成长度为0的左子数组和长度为 n - 1 的右数组。这种情况下,递归的深度就成为 n,需要的栈空间为 O(n)。
以下贴出快速排序的代码:
#include <iostream>
using namespace std;
int a[101], n;
void quickSort(int left, int right)
{
int i, j, t, temp;
if (left > right)
return;
temp = a[left];
i = left;
j = right;
while (i != j)
{
while (a[j] >= temp && i < j)
j--;
while (a[i] <= temp && i < j)
i++;
if (i < j)
{
t = a[i];
a[i] = a[j];
a[j] = t;
}
}
a[left] = a[i];
a[i] = temp;
quickSort(left, i - 1);
quickSort(i + 1, right);
}
int main()
{
int i;
cin >> n;
for (i = 0; i < n; i++)
{
cin >> a[i];
}
quickSort(0, n - 1);
for (i = 0; i < n; i++)
{
cout << a[i] << " ";
}
system("pause");
return 0;
}