根据以上的分析,不难写出程序:
void Move(char chSour, char chDest)
{/* 打印移动步骤 */
printf("/nMove the top plate of %c to %c",chSour, chDest);}
Hanoi (int n, char chA, char chB, char chC)
{/* 检查当前的盘子数量是否为 1*/
if(n==1) /* 盘子数量为 1 ,打印结果后,不再继续进行递归 */
Move(chA,chC);
else/* 盘子数量大于 1 ,继续进行递归过程 */
{Hanoi(n-1,chA,chC,chB);
Move(chA,chC);
Hanoi (n-1,chB,chA,chC);}}
main()
{int n;
printf("/nPlease input number of the plates: ");/* 输入盘子的数量 */
scanf("%d",&n);
printf("/nMoving %d plates from A to C:",n);
/* 调用函数计算,并打印输出结果 */
Hanoi (n,'A','B','C');}
第二种:不使用递归方法。
#include
<iostream>
using namespace std;
const int MAX = 64; // 圆盘的个数最多为 64
// 用来表示每根柱子的信息
struct st{
int s[MAX]; // 柱子上的圆盘存储情况
int top; // 栈顶,用来最上面的圆盘
char name; // 柱子的名字,可以是 A , B , C 中的一个
int Top()// 取栈顶元素
{return s[top];}
int Pop()// 出栈
{return s[top--];}
void Push(int x)// 入栈
{s[++top] = x;}
} ;
long Pow(int x, int y); // 计算 x^y
void Creat(st ta[], int n); // 给结构数组设置初值
void Hannuota(st ta[], long max); // 移动汉诺塔的主要函数
int main(void)
{ int n ;
cin >> n; // 输入圆盘的个数
st ta[3]; // 三根柱子的信息用结构数组存储
Creat(ta, n); // 给结构数组设置初值
long max = Pow(2, n) - 1;// 动的次数应等于 2^n – 1
Hannuota(ta, max);// 移动汉诺塔的主要函数
system("pause");
return 0;}
void Creat(st ta[], int n)
{ ta[0].name = 'A';
ta[0].top = n-1;
// 把所有的圆盘按从大到小的顺序放在柱子 A 上
for (int i=0; i<n; i++)
ta[0].s[i] = n - i;
// 柱子 B , C 上开始没有没有圆盘
ta[1].top = ta[2].top = 0;
for (int i=0; i<n; i++)
ta[1].s[i] = ta[2].s[i] = 0;
// 若 n 为偶数,按顺时针方向依次摆放 A B C
if (n%2 == 0)
{ta[1].name = 'B'; ta[2].name = 'C';}
else // 若 n 为奇数,按顺时针方向依次摆放 A C B
{ta[1].name = 'C';ta[2].name = 'B'; }}
long Pow(int x, int y)
{long sum = 1;
for (int i=0; i<y; i++)sum *= x;
return sum;}
void Hannuota(st ta[], long max)
{int k = 0; // 累计移动的次数