自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(40)
  • 收藏
  • 关注

原创 轮播图

淘宝轮播图1、自动轮播(每隔一段时间换一张图)2、鼠标放上去(自动轮播停止),鼠标移出(自动轮播停止)3、有左右按钮,单击左右按钮可以切换图片4、单击不同的分页器,可以显示不同图片<!DOCTYPE html><html lang="en"><head> <meta charset="UTF-8"> <meta name="viewport" content="width=device-width, initial-scal

2021-04-06 15:58:28 14

原创 梯度下降法及其模拟

梯度下降法(Gradient Descent) 不是一个机器学习算法是一种基于搜索的最优化方法作用:最小化一个损失函数梯度上升法:最大化一个效用函数根据高等数学的知识,图中曲线上点的位置应当沿着dJdΘ\frac{dJ}{d\Theta }dΘdJ​的值减小的方向移动。设有一个η\etaη>0,−η-\eta−η<0,此时Θ\ThetaΘ就会变成Θ−ηdJdΘ\Theta-\eta\frac{dJ}{d\Theta }Θ−ηdΘdJ​。η\etaη表示蓝色点移动的

2021-03-20 20:01:24 6

原创 线性回归算法总结

线性回归算法总结线性回归算法:典型的参数学习对比kNN:非参数学习只能解决回归问题虽然很多分类方法中,线性回归是基础(如逻辑回归)对比kNN:既可以解决分类问题,有可以解决回归问题对数据有假设:线性(线性关系越强,得到的结果就越好)对比kNN:对数据没有假设对数据具有强解释性(如波士顿房价和房子房间数,是否临河有关系)### 更多关于线性回归模型的讨论import numpy as npfrom sklearn import datasetsboston

2021-03-20 15:53:12 5

原创 5-09-Regression-in-scikit-learn

import numpy as npimport matplotlib.pyplot as pltfrom sklearn import datasetsboston = datasets.load_boston()X = boston.datay = boston.targetX = X[y < 50.0]y = y[y < 50.0]X.shape输出:(490, 13)from playML.model_selection import train_test_

2021-03-20 15:15:51 3

原创 多元线性回归

目标:使∑i=1m(y(i)−y^(i))2\sum_{i=1}^{m}(y^{(i)}-\hat{y}^{(i)})^{2}∑i=1m​(y(i)−y^​(i))2尽可能小y^(i)=Θ0+Θ1X1(i)+Θ2X2(i)+...+ΘnXn(i)\hat{y}^{(i)}=\Theta _{0}+\Theta _{1}X_{1}^{(i)}+\Theta _{2}X_{2}^{(i)}+...+\Theta _{n}X_{n}^{(i)}y^​(i)=Θ0​+Θ1​X1(i)​+Θ2​X2(i)​+...

2021-03-19 15:57:49 25

原创 衡量线性回归法的指标MSE、RMSE、MAE、R Squared(最佳)

线性回归算法的评测                                        &nbs

2021-03-19 13:18:54 129

原创 MySQL索引

索引存储在磁盘中,而不是内存中存储引擎:不同的存放位置,不同的文件格式不同的存储引擎,数据文件和索引文件存放的位置是不同的,因此有了分类:聚簇索引:数据和文件放在一起:innodb      .frm:存放的是表结构      .ibd存放数据文件和索引文件注意:MySQL的innodb存储引擎默认情况下会把所有的数据文件放到表空间中,不会为每一个单独的表保存一份数据文件,如果

2021-03-18 17:04:48 2

原创 简单线性回归的实现、向量化

import numpy as npimport matplotlib.pyplot as pltx=np.array([1.,2.,3.,4.,5.])y=np.array([1.,3.,2.,4.,5.])plt.scatter(x,y)plt.axis([0,6,0,6])plt.show()a=∑i=1m(x(i)−xˉ)(y(i)−yˉ)∑i=1m(x(i)−xˉ)2a=\frac{\sum_{i=1}^{m}(x^{(i)}-\bar{x})(y^{(i)}-\bar{y}

2021-03-18 15:09:24 6

原创 简单线性回归、最小二乘法

线性回归算法解决回归问题思路简单,实现容易许多强大的非线性性模型的基础结果具有很好的可解释性蕴含机器学习中很多重要思想寻找一条直线,最大程度的“拟合”样本特征和样本实处标记之间的关系样本特征只有一个,成为简单线 性回归简单线性回归假设我们找到了最佳拟合的直线方程:y=ax+b则对于每一个样本点x(i)x^{(i)}x(i)根据我们的直线方程,预测为:y^(i)=ax(i)+b\hat{y}^{(i)}=ax^{(i)}+by^​(i)=ax(i)+b真值为y(i)y^{(i)}y(

2021-03-18 14:20:48 9

原创 更多关于k近邻算法

更多关于k近邻算法最大缺点:效率低下如果训练集有m个样本,n个特征,则预测每一个新的数据需要O(m*n)优化方式:使用树结构:KD-Tree,Ball-Tree缺点2:预测结果高度数据相关尽管理论上所有机器学习算法都是数据相关的。但是k近邻算法预测样本中一旦有两个错误的值,足以让最终的预测结果产生错误,哪怕在更高的范围里,在这个空间中有更多正确的样本缺点3:预测结果不具有可解释性只是找到了和要预测的样本距离比较近的样本,就说这个样本属于这个类别,但是该样本为什么属于该类别根本无从知晓缺点4:

2021-03-18 11:28:06 9

原创 08-scikit-learn中的Scaler(归一化问题)

对测试数据集如何归一化?测试数据是模拟真实环境,真实环境有可能无法得到所有测试对数据的归一化也是算法的一部分(x_test - mean_train) / std_train要保存训练数据集得到的均值和方差import numpy as npfrom sklearn import datasetsiris = datasets.load_iris()//加载鸢尾花数据集X = iris.datay = iris.targetX[:10,:]运行结果:array([[5.1, 3.

2021-03-17 20:34:47 27

原创 07-数据归一化

数据归一化解决方法:将所有的数据映射到同一尺度最值归一化:把所有的数据映射到0-1之间Xscale = (X - Xmin)/Xmax - Xmin适用于有明显边界的情况(比如说学生的分数最低值是0分,最大值是100分);受outlier影响较大### 数据归一化处理import numpy as npimport matplotlib.pyplot as plt### 最值归一化 Normalizationx = np.random.randint(0,100,size=100)

2021-03-17 15:32:47 4

原创 06-Grid-Search(网格搜索)

### 网格搜索import numpy as npfrom sklearn import datasetsdigits = datasets.load_digits()X = digits.datay = digits.targetfrom sklearn.model_selection import train_test_splitX_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0.2,random_st

2021-03-17 13:54:36 5

原创 05-Hyper-Parameters(超参数)、明可夫斯基算法

超参数和模型参数超参数:在算法运行前需要决定的参数模型参数:算法过程中学习的参数kNN算法没有模型参数kNN算法中的k是典型的超参数随机种子:随机数种子控制每次划分训练集和测试集的模式,其取值不变时划分得到的结果一模一样,其值改变时,划分得到的结果不同。若不设置此参数,则函数会自动选择一种随机模式,得到的结果也就不同。### 超参数import numpy as npfrom sklearn import datasetsdigits = datasets.load_digits()

2021-03-17 13:03:50 5

原创 04-Hyper-Parameter-K

import numpy as npimport matplotlibimport matplotlib.pyplot as pltfrom sklearn import datasetsdigits = datasets.load_digits()digits.keys()print(digits.DESCR)X = digits.dataX.shapey = digits.targety.shapedigits.target_namesy[:100]X[:10]

2021-03-16 19:23:27 8

原创 Train-Test-Split

以鸢尾花的数据为例:import numpy as npimport matplotlib.pyplot as pltfrom sklearn import datasetsiris = datasets.load_iris()X = iris.datay = iris.targetX.shapey.shape### train_test_splity对第0到149个索引进行乱序排列shuffle_indexes = np.random.permutation(len

2021-03-16 16:47:09 9

原创 centos 在NAT模式下无法ping通主机

被这个问题困扰很久了,centos在NAT模式下主机与虚拟机之间无法互相ping通,终于找到了解决办法,或许可以给有同样困扰的朋友提供参考1、首先打开任务管理器(我就是白忙活了半天结果发现是服务于没有开启),确保VMware DHCP Service与VMware NAT Service这两个任务已开启2、命令行输入ipconfig,查看以太网ipv4的IP地址,然后打开虚拟机的虚拟网络编辑器,选择nat模式,将子网IP设置为与一个与主机IP在同一网段的IP地址即可(前三个数字相同)3、service

2021-02-25 19:49:49 31

原创 数据库的三大范式

数据库的三范式是为了减少数据冗余第一范式(1NF)第一范式:确定每列保持的原子性(列不可分)第一范式是最基本的范式。如果数据库表中的所有字段值都是不可分解的原子值,就说明该数据库满足了第一范式例:地址可以细分为省、市、区…不满足第一范式则不是关系型数据库第二范式(2NF)第二范式:确保表中的每列都和主键相关也就是说在一个数据库表中,一个表中只能保存一种数据,不可以把多种数据保存在一张数据库表中例:比如要设计一个订单信息,因为订单中可能会有多种商品,所以要将订单编号和商品编号作为数据库的联合

2021-02-01 16:23:27 23

原创 数据库表的创建

数据库表--设计要求:建立一张用来存储学生信息的表,表中的字段包含了学生的学号、姓名、年龄、入学日期、年级、班级、email等信息--并且为grade指定了默认值为1,如果在插入数据时不指定grade的值,就代表是一年级的学生create table student(stu_id number(10),name varchar2(20),age number(3),hiredate date,grade varchar2(10) default 1,classes varchar2(10

2021-02-01 15:31:43 47

原创 数据库的事务

–事务:表示操作集合,要么全部成功,要么全部失败–事务的开始取决于一个DML语句事务的结束:         1、正常的commit(使数据修改生效)和rollback(将数据恢复到上一个状态)         2、自动提交,但是一般情况下要将自动提交关闭,因为效率太低    &n

2021-02-01 09:58:19 8

原创 视图、序列、DML

--创建视图--如果普通用户第一次创建视图提示没有权限,要使用管理员去修改权限--使用grant create view to scott;create view v_emp as select * from emp where deptno = 30;--视图的使用select * from v_emp;--向视图中添加数据insert into v_emp(empno,ename)values(1111,'values');select * from v_emp;--非只读视图可以通过

2021-01-31 14:19:23 9

原创 Oracle中的join语法、子查询及行转列

join语法--cross join 等同于92语法中的笛卡尔积select * from emp cross join dept;--natural join 相当于是等值连接,但是注意,不需要写连接条件,会从两张表中找到相同的列做连接,当两张表中不具有相同的列的时候,会进行笛卡尔积操作--自然连接和92语法中国的自连接没有任何关系select * from emp e natural join dept d;--on子句,可以添加任意的连接条件--相当于92语法中的等值连接select

2021-01-29 21:04:29 25 1

原创 Oracle函数和多表连接

/*组函数又称为聚合函数,输入多个值,最终只会返回一个值组函数仅可用于选择列表或查询到额having子句单行函数输入一个值,输出一个值*/--函数的测试--查询所有员工的薪水总和select sum(sal) from emp;--查看表中有多少条记录select count(*) from emp;字符函数--字符函数--concat:表示字符串的额连接,等同于||select concat('my name is ',ename) from emp;--将字符串的首字母大

2021-01-28 14:22:40 16

原创 Oracle SQL语句

--给表添加注解comment on table emp is'雇员表';--给列添加注解comment on column emp.ename is'雇员姓名';--查询雇员表中部门编号是10的员工select empno,ename from emp where deptno=10;--distinct去重select distinct deptno from emp;--去重也可以针对多个字段,多个字段中只要有一个字段不匹配就算是不同的记录select distinct dept

2021-01-27 20:48:03 7

原创 Stream api

Stream的创建1、通过数组2、通过集合3、通过Stream.generate方法4、通过Stream.iterate方法5、通过其它API创建import java.util.Arrays;import java.util.List;import java.util.stream.IntStream;import java.util.stream.Stream;public class StreamDemo { //通过数组来生成 static void gen1

2021-01-24 20:19:19 5

原创 多线程

程序:是一个指令的集合进程:(正在执行中的程序),是一个静态的概念线程:是进程中一个“单一的连续控制流程”,又被称为轻量级进程,,一个进程可拥有多个并行的线程实现多线程的时候:        1、需要继承Thread类        2、需要重写run方法,指的是核心执行的逻辑     &

2021-01-17 11:51:58 8

原创 关于Map的作业

使用List,map容器存放如下数据,并从map中取出“李四”姓名:张三 年龄:18 体重:90 地址:北京姓名:李四 年龄:28 体重:50 地址:上海package MapHomeWork;public class Person { private String name; private int age; private int weight; private String address; public Person() {

2021-01-13 19:55:19 40

原创 Java集合框架

java集合框架如果并不知道程序运行时会需要多少对象,或者需要更复杂的方式存储对象,可以使用java集合框架Collection接口存储一组不唯一、无序的对象List接口存储一组不唯一、有序(插入顺序)的对象Set接口存储一组唯一、无序的对象Map接口存储一组键值对象,提供一组key到value的映射Collection接口Collection:存放的是单一值特点:1、可以存放不同类型的数据,而数组只能存放固定类型的数据2、当使用arraylist子类的时候哦,初始长度为10,当长度不够

2021-01-12 15:52:20 17 1

原创 泛型

泛型的优点:      1、数据安全      2、获取数据时效率比较高泛型的高阶应用:      1、泛型类:在定义类的时候在类名后添<E、K、V、A、B>起到占位作用,类中的方法的返回值类型和属性类型都可以使用public class FanXingClass<A> { privat

2021-01-11 21:41:48 17

原创 常用类

可变字符串StringBuffer:线程安全,效率低StringBuilder:线程不安全,效率高    Date类 Date date = new Date(); System.out.println(date); //得到毫秒值 System.out.println(date.getTime()); //将date类按照规范转化为字符串格式 DateFormat dat

2021-01-10 15:19:06 22

原创 包装类、字符串

包装类包装类:包装类是将基本数据类型封装到一个类中,包含属性和方法,方便对象操作。基本数据类型转换成包装类以及包装类转换成基本数据类型: int a = 10; Integer i = new Integer(10); //基本类型转换成Integer类型 Integer i2 = Integer.valueOf(a); //Integer类型转换成基本类型 int i3 = i.intValue();

2021-01-10 12:14:33 25 1

原创 异常

异常处理的方式:1、捕获异常      try{可能出现异常的代码}catch(Exception e){异处理逻辑}      try{可能出现异常的代码}catch(具体的异常 e){异处理逻辑}catch(具体的异常 e){异处理逻辑},可以针对具体的异常做丰富的处理         &

2021-01-10 10:50:27 9

原创 堆、栈、构造方法、static、this

内存分析栈:存放局部变量,先进后出,自下而上存储堆:存放new出来的对象,需要垃圾回收器来回收方法区:存放类的信息(代码),static变量,字符串常量等变量局部变量   定义在方法之中的变量称之为局部变量   作用域:从定义的位置开始到整个方法结束   局部变量不包含默认值,如果没有使用当前变量的话,可以不赋值   注意:局部变量只能在当前方法中使用,其它地方无

2021-01-05 15:30:11 17

原创 数组的创建以及排序

数组的创建①先声明再申请空间int[] array;array = new int[5];②声明并申请空间int[] array = new int[5];③声明数组并赋值int[] array = new int[]{1,2,3};

2021-01-04 17:32:14 15

原创 九九乘法表

public class ManyFor{ public static void main(String[] args){ int i,j; for(i = 1;i <= 9;i ++) { for(j = 1;j <= i ;j ++) System.out.print(j + "*" + i + "=" + i * j + "\t"); System.out.println(); } }}结果如下:

2021-01-04 12:50:43 70

原创 将十进制数转化为二进制数

将一个十进制数转化为二进制数import java.util.Scanner;public class TenToTwo{ public static void main(String[] args){ int i; String str = ""; Scanner sc = new Scanner(System.in); System.out.println("请输入要转化的数:"); int num = sc.nextInt(); while(num != 0) {

2021-01-03 21:30:15 59

原创 命名规则、数据类型、运算符

!在这里插入图片描述](https://img-blog.csdnimg.cn/20210102201453933.PNG?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L0JvbmpvdXJfaA==,size_16,color_FFFFFF,t_70)

2021-01-03 16:22:18 210 2

原创 jdk8和jdk12同时安装

因为之前安装过了JDK8现在想安装JDK12①下载jdk12正常安装②配置环境变量将系统变量Path最前面的C:\Program Files (x86)\Common Files\Oracle\Java\javapath;(这是JDK8安装时系统自动加上的)删除此时执行java -version显示版本为8③修改原来的JAVA_HOME为JAVA_HOME8,值不变,为原来jdk8的路径添加新的变量JAVA_HOME12,值为D:\Java\jdk-12.0.1添加新的变量JAVA_HOME,值

2021-01-02 14:36:51 126 1

原创 VMware下centos NAT不能上网

查看主机(windoes)的相关服务是否打开,主要是VMware DHCP 和VMware NAT这两个服务

2020-12-29 15:42:32 31

原创 Python运行报错

部分代码:with open(“movie.txt”,‘a’,encoding=‘utf-8’) as f:f.write(json.dumps(item,ensure_ascii=False)+’\n’)我遇到的问题:TypeError: Object of type ‘MovieItem’ is not JSON serializable解决方法:加个dict使其序列化f.write(json.dumps(dict(item),ensure_ascii=False)+’\n’)...

2020-05-22 15:28:18 53

空空如也

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人 TA的粉丝

提示
确定要删除当前文章?
取消 删除