1 题目地址
2 题目说明
给你一个字符串数组
tokens
,表示一个根据 逆波兰表示法 表示的算术表达式。请你计算该表达式。返回一个表示表达式值的整数。
注意:
- 有效的算符为
'+'
、'-'
、'*'
和'/'
。- 每个操作数(运算对象)都可以是一个整数或者另一个表达式。
- 两个整数之间的除法总是 向零截断 。
- 表达式中不含除零运算。
- 输入是一个根据逆波兰表示法表示的算术表达式。
- 答案及所有中间计算结果可以用 32 位 整数表示。
示例 1:
输入:tokens = ["2","1","+","3","*"] 输出:9 解释:该算式转化为常见的中缀算术表达式为:((2 + 1) * 3) = 9示例 2:
输入:tokens = ["4","13","5","/","+"] 输出:6 解释:该算式转化为常见的中缀算术表达式为:(4 + (13 / 5)) = 6示例 3:
输入:tokens = ["10","6","9","3","+","-11","*","/","*","17","+","5","+"] 输出:22 解释:该算式转化为常见的中缀算术表达式为: ((10 * (6 / ((9 + 3) * -11))) + 17) + 5 = ((10 * (6 / (12 * -11))) + 17) + 5 = ((10 * (6 / -132)) + 17) + 5 = ((10 * 0) + 17) + 5 = (0 + 17) + 5 = 17 + 5 = 22提示:
1 <= tokens.length <= 104
tokens[i]
是一个算符("+"
、"-"
、"*"
或"/"
),或是在范围[-200, 200]
内的一个整数逆波兰表达式:
逆波兰表达式是一种后缀表达式,所谓后缀就是指算符写在后面。
- 平常使用的算式则是一种中缀表达式,如
( 1 + 2 ) * ( 3 + 4 )
。- 该算式的逆波兰表达式写法为
( ( 1 2 + ) ( 3 4 + ) * )
。逆波兰表达式主要有以下两个优点:
- 去掉括号后表达式无歧义,上式即便写成
1 2 + 3 4 + *
也可以依据次序计算出正确结果。- 适合用栈操作运算:遇到数字则入栈;遇到算符则取出栈顶两个数字进行计算,并将结果压入栈中
3 解题思路
简单介绍下后缀表达式,一般我们使用的是中缀表达式(1+2)*(3+4),这样会形成一棵树,形如下图,后缀表达式其实就是如下二叉树的后续遍历生成的表达式。
解题:
1、定义一个Stack来存放数据
2、遇到数字就push到Stack中
3、遇到运算符(+ - * /)就获取Stack中的前两位数据,然后进行对应的运算,将结果压栈到Stack中
4、Stack最后存放的是最终结果
4 代码编写
class Solution {
public int evalRPN(String[] tokens) {
Stack<Integer> stack = new Stack<>();
for (int i=0; i<tokens.length; i++) {
String s = tokens[i];
if (isChar(s)) {
int second = stack.pop();
int first = stack.pop();
// 注意区分运算的第一个、第二个数据
stack.push(dealNum(first, second, s));
} else {
stack.push(Integer.parseInt(s));
}
}
return stack.pop();
}
public int dealNum(Integer a, Integer b, String s) {
if (Objects.equals(s, "+")) {
return a+b;
} else if (Objects.equals(s, "-")) {
return a-b;
} else if (Objects.equals(s, "*")) {
return a*b;
} else if (Objects.equals(s, "/")) {
return a/b;
}
return -1;
}
public boolean isChar(String s) {
List<String> aList = Arrays.asList("+", "-", "*", "/");
if (aList.contains(s)) {
return true;
}
return false;
}
}