36-算法打卡-栈与队列-逆波兰表达式求值-leetcode(150)-第三十六天

1 题目地址

150. 逆波兰表达式求值 - 力扣(LeetCode)150. 逆波兰表达式求值 - 给你一个字符串数组 tokens ,表示一个根据 逆波兰表示法 [https://baike.baidu.com/item/%E9%80%86%E6%B3%A2%E5%85%B0%E5%BC%8F/128437] 表示的算术表达式。请你计算该表达式。返回一个表示表达式值的整数。注意: * 有效的算符为 '+'、'-'、'*' 和 '/' 。 * 每个操作数(运算对象)都可以是一个整数或者另一个表达式。 * 两个整数之间的除法总是 向零截断 。 * 表达式中不含除零运算。 * 输入是一个根据逆波兰表示法表示的算术表达式。 * 答案及所有中间计算结果可以用 32 位 整数表示。 示例 1:输入:tokens = ["2","1","+","3","*"]输出:9解释:该算式转化为常见的中缀算术表达式为:((2 + 1) * 3) = 9示例 2:输入:tokens = ["4","13","5","/","+"]输出:6解释:该算式转化为常见的中缀算术表达式为:(4 + (13 / 5)) = 6示例 3:输入:tokens = ["10","6","9","3","+","-11","*","/","*","17","+","5","+"]输出:22解释:该算式转化为常见的中缀算术表达式为: ((10 * (6 / ((9 + 3) * -11))) + 17) + 5= ((10 * (6 / (12 * -11))) + 17) + 5= ((10 * (6 / -132)) + 17) + 5= ((10 * 0) + 17) + 5= (0 + 17) + 5= 17 + 5= 22 提示: * 1 <= tokens.length <= 104 * tokens[i] 是一个算符("+"、"-"、"*" 或 "/"),或是在范围 [-200, 200] 内的一个整数 逆波兰表达式:逆波兰表达式是一种后缀表达式,所谓后缀就是指算符写在后面。 * 平常使用的算式则是一种中缀表达式,如 ( 1 + 2 ) * ( 3 + 4 ) 。 * 该算式的逆波兰表达式写法为 ( ( 1 2 + ) ( 3 4 + ) * ) 。逆波兰表达式主要有以下两个优点: * 去掉括号后表达式无歧义,上式即便写成 1 2 + 3 4 + * 也可以依据次序计算出正确结果。 * 适合用栈操作运算:遇到数字则入栈;遇到算符则取出栈顶两个数字进行计算,并将结果压入栈中https://leetcode.cn/problems/evaluate-reverse-polish-notation/description/


2 题目说明

给你一个字符串数组 tokens ,表示一个根据 逆波兰表示法 表示的算术表达式。

请你计算该表达式。返回一个表示表达式值的整数。

注意:

  • 有效的算符为 '+''-''*' 和 '/' 。
  • 每个操作数(运算对象)都可以是一个整数或者另一个表达式。
  • 两个整数之间的除法总是 向零截断 。
  • 表达式中不含除零运算。
  • 输入是一个根据逆波兰表示法表示的算术表达式。
  • 答案及所有中间计算结果可以用 32 位 整数表示。

示例 1:

输入:tokens = ["2","1","+","3","*"]
输出:9
解释:该算式转化为常见的中缀算术表达式为:((2 + 1) * 3) = 9

示例 2:

输入:tokens = ["4","13","5","/","+"]
输出:6
解释:该算式转化为常见的中缀算术表达式为:(4 + (13 / 5)) = 6

示例 3:

输入:tokens = ["10","6","9","3","+","-11","*","/","*","17","+","5","+"]
输出:22
解释:该算式转化为常见的中缀算术表达式为:
  ((10 * (6 / ((9 + 3) * -11))) + 17) + 5
= ((10 * (6 / (12 * -11))) + 17) + 5
= ((10 * (6 / -132)) + 17) + 5
= ((10 * 0) + 17) + 5
= (0 + 17) + 5
= 17 + 5
= 22

提示:

  • 1 <= tokens.length <= 104
  • tokens[i] 是一个算符("+""-""*" 或 "/"),或是在范围 [-200, 200] 内的一个整数

逆波兰表达式:

逆波兰表达式是一种后缀表达式,所谓后缀就是指算符写在后面。

  • 平常使用的算式则是一种中缀表达式,如 ( 1 + 2 ) * ( 3 + 4 ) 。
  • 该算式的逆波兰表达式写法为 ( ( 1 2 + ) ( 3 4 + ) * ) 。

逆波兰表达式主要有以下两个优点:

  • 去掉括号后表达式无歧义,上式即便写成 1 2 + 3 4 + * 也可以依据次序计算出正确结果。
  • 适合用栈操作运算:遇到数字则入栈;遇到算符则取出栈顶两个数字进行计算,并将结果压入栈中

3 解题思路

简单介绍下后缀表达式,一般我们使用的是中缀表达式(1+2)*(3+4),这样会形成一棵树,形如下图,后缀表达式其实就是如下二叉树的后续遍历生成的表达式。

解题:
1、定义一个Stack来存放数据
2、遇到数字就push到Stack中
3、遇到运算符(+ - * /)就获取Stack中的前两位数据,然后进行对应的运算,将结果压栈到Stack中
4、Stack最后存放的是最终结果


4 代码编写

class Solution {
    public int evalRPN(String[] tokens) {
        Stack<Integer> stack = new Stack<>();
        for (int i=0; i<tokens.length; i++) {
            String s = tokens[i];
            if (isChar(s)) {
                int second  = stack.pop();     
                int first  = stack.pop();  
                // 注意区分运算的第一个、第二个数据
                stack.push(dealNum(first, second, s));
            } else {
                stack.push(Integer.parseInt(s));
            }
        }
        return stack.pop();
    }

    public int dealNum(Integer a, Integer b, String s) {
        if (Objects.equals(s, "+"))  {
            return a+b;
        } else if (Objects.equals(s, "-")) {
            return a-b;
        } else if (Objects.equals(s, "*")) {
            return a*b;
        } else if (Objects.equals(s, "/")) {
            return a/b;
        }
        return -1;
    }

    public boolean isChar(String s) {
        List<String> aList = Arrays.asList("+", "-", "*", "/");
        if (aList.contains(s)) {
            return true;
        }
        return false;
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值