根据逆波兰表示法,求表达式的值。
有效的运算符包括 +
, -
, *
, /
。每个运算对象可以是整数,也可以是另一个逆波兰表达式。
说明:
- 整数除法只保留整数部分。
- 给定逆波兰表达式总是有效的。换句话说,表达式总会得出有效数值且不存在除数为 0 的情况。
示例 1:
输入: ["2", "1", "+", "3", "*"] 输出: 9 解释: ((2 + 1) * 3) = 9
示例 2:
输入: ["4", "13", "5", "/", "+"] 输出: 6 解释: (4 + (13 / 5)) = 6
示例 3:
输入: ["10", "6", "9", "3", "+", "-11", "*", "/", "*", "17", "+", "5", "+"] 输出: 22 解释: ((10 * (6 / ((9 + 3) * -11))) + 17) + 5 = ((10 * (6 / (12 * -11))) + 17) + 5 = ((10 * (6 / -132)) + 17) + 5 = ((10 * 0) + 17) + 5 = (0 + 17) + 5 = 17 + 5 = 22
class Solution {
public:
int evalRPN(vector<string>& tokens) {
int result;
stack<int> stack;
for (int i=0;i<tokens.size();i++)
{
if(tokens[i]=="+"||tokens[i]=="-"||tokens[i]=="*"||tokens[i]=="/")
{
int num1 = stack.top();
stack.pop();
int num2 = stack.top();
stack.pop();
int num3 = 0;
if (tokens[i] == "+") {
num3 = num2 + num1;
}
else if (tokens[i] == "-") {
num3 = num2 - num1;
}
else if (tokens[i] == "*") {
num3 = num2 * num1;
}
else if (tokens[i] == "/") {
num3 = num2 / num1;
}
stack.push(num3);
}
else
{
stack.push(stoi(tokens[i]));
}
}
return stack.top();
}
};
具体过程图示参考这篇文章
思路是检测是否是数,是的话,压入栈,不是的话,计算,得到的结果压入栈