37-算法打卡-栈与队列-滑动窗口最大值-leetcode(239)-第三十七天

1 题目地址

239. 滑动窗口最大值 - 力扣(LeetCode)239. 滑动窗口最大值 - 给你一个整数数组 nums,有一个大小为 k 的滑动窗口从数组的最左侧移动到数组的最右侧。你只可以看到在滑动窗口内的 k 个数字。滑动窗口每次只向右移动一位。返回 滑动窗口中的最大值 。 示例 1:输入:nums = [1,3,-1,-3,5,3,6,7], k = 3输出:[3,3,5,5,6,7]解释:滑动窗口的位置 最大值--------------- -----[1 3 -1] -3 5 3 6 7 3 1 [3 -1 -3] 5 3 6 7 3 1 3 [-1 -3 5] 3 6 7 5 1 3 -1 [-3 5 3] 6 7 5 1 3 -1 -3 [5 3 6] 7 6 1 3 -1 -3 5 [3 6 7] 7示例 2:输入:nums = [1], k = 1输出:[1] 提示: * 1 <= nums.length <= 105 * -104 <= nums[i] <= 104 * 1 <= k <= nums.lengthhttps://leetcode.cn/problems/sliding-window-maximum/description/


2 题目说明

给你一个整数数组 nums,有一个大小为 k 的滑动窗口从数组的最左侧移动到数组的最右侧。你只可以看到在滑动窗口内的 k 个数字。滑动窗口每次只向右移动一位。

返回 滑动窗口中的最大值 

示例 1:

输入:nums = [1,3,-1,-3,5,3,6,7], k = 3
输出:[3,3,5,5,6,7]
解释:
滑动窗口的位置                最大值
---------------               -----
[1  3  -1] -3  5  3  6  7       3
 1 [3  -1  -3] 5  3  6  7       3
 1  3 [-1  -3  5] 3  6  7       5
 1  3  -1 [-3  5  3] 6  7       5
 1  3  -1  -3 [5  3  6] 7       6
 1  3  -1  -3  5 [3  6  7]      7

示例 2:

输入:nums = [1], k = 1
输出:[1]

提示:

  • 1 <= nums.length <= 105
  • -104 <= nums[i] <= 104
  • 1 <= k <= nums.length

3 解题思路

3.1 暴力方式

每次移动滑动窗口,比较窗口内的数据取出最大值,时间复杂度O(n*k),不推荐使用

3.2 单调队列(待补充)

百度百科:即单调递减或单调递增的队列。使用频率不高,但在有些程序中会有非同寻常的作用。解题思路:其实队列没有必要维护窗口里的所有元素,只需要维护有可能成为窗口里最大值的元素就可以了,同时保证队列里的元素数值是由大到小的。

流程:
队列表示滑动窗口
头尾尾头口诀
1.头:清理超期元素(清理i-k位置的元素)2.尾:维护单调递减队列(清除队列内<新人队元素的元素)
3.尾:新元素人队
4.头:获取滑动窗口最大值(返回头部元素,i>=k-1时)
i为当前即将人队元素下标
k为滑动窗口大小


4 代码编写

4.1 暴力方式(超出时间限制)

class Solution {
    public int[] maxSlidingWindow(int[] nums, int k) {
        int m = nums.length;
        // 滑动次数
        int times = m - k + 1;
        int[] resultArray = new int[times];
        for (int i=0; i<times; i++) {
            int start = i;
            resultArray[i] = max(nums, start, k);
        }
        return resultArray;
    }

    public int max(int[] nums, int start, int k) {
        int maxNum = nums[start];
        for (int i=start; i<start+k; i++) {
            if (maxNum<nums[i]) {
                maxNum = nums[i];
            }
        }
        return maxNum;
    }
}

 4.2 单调队列

class Solution {
    public int[] maxSlidingWindow(int[] nums, int k) {
        int m = nums.length;
        int[] result = new int[m-k+1];
        int resultIndex = 0;
        // 定义双端队列, 存储的是索引的下标
        Deque<Integer> deque = new LinkedList<>();
        for (int i=0; i<m; i++) {
            // 清理超期元素
            if (!deque.isEmpty() && deque.peek() == (i-k)) {
                deque.remove();
            }
            // 尾:维护单调递减队列(清除队列内<新入队元素的元素)
            while (!deque.isEmpty() && nums[deque.peekLast()]<=nums[i]) {
                deque.removeLast();
            }
            //3.尾:新元素入队
            deque .add(i);
            //4.头:获取滑动窗口最大值(返回头部元素,i>=k-1时)
            if (i>=k-1) {
                result[resultIndex++]= nums[deque.peek()];
            }
        }
        return result;
    }
   
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值