数论知识小结

这篇博客探讨了如何在O(nlog(n))时间内计算1到n中每个数的约数和,以及O(nlog(logn))的时间复杂度下求解质因数个数。同时介绍了通过计算最大公约数获取两数相同质因数个数的方法,并展示了快速计算组合数的模运算技巧,适用于质数模的情况。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

O (nlog(n))时间内得出1~n中每个数的约数和

for (int i = 1;i <= N;i++) {
    for (int j = 1;j <= N / i;j++) {
        f[i * j] += i;//f[i*j]++ 统计个数
    }
}

O (nlog(logn))时间内求出1~n之间每个数的质因数个数

for (int i = 2;i <= N;i++) {
        if (st[i])continue;
        for (int j = i+i;j <= N;j += i) {
            cnt[j]++;//cnt[j]+=i 统计和
            st[j] = true;
        }
    }

求两数的相同质因数个数可以直接计算两数的gcd的质因数个数

暴力求组合数(取模数为质数时可用,一般套在lucas定理中)

for (int i = 1, j = a;i <= b;i++, j--) {
        res = res * j % p;
        res=res*qmi(i,p-2,p)%p;(b!的乘法逆元)
}

 

 

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值