O (nlog(n))时间内得出1~n中每个数的约数和
for (int i = 1;i <= N;i++) {
for (int j = 1;j <= N / i;j++) {
f[i * j] += i;//f[i*j]++ 统计个数
}
}
O (nlog(logn))时间内求出1~n之间每个数的质因数个数
for (int i = 2;i <= N;i++) {
if (st[i])continue;
for (int j = i+i;j <= N;j += i) {
cnt[j]++;//cnt[j]+=i 统计和
st[j] = true;
}
}
求两数的相同质因数个数可以直接计算两数的gcd的质因数个数
暴力求组合数(取模数为质数时可用,一般套在lucas定理中)
for (int i = 1, j = a;i <= b;i++, j--) {
res = res * j % p;
res=res*qmi(i,p-2,p)%p;(b!的乘法逆元)
}