题意:
求最大子矩阵和。最大子段和问题在二维空间上的推广
思路:
一维的情况:设有数组a0,a1…an,找除其中连续的子段,使它们的和达到最大。
假如对于子段:9 2 -16 2
dp[i]表示:以ai结尾的子段中的最大子段和。在已知dp[i]的情况下,求dp[i+1]的方法是:如果dp[i] > 0,dp[i + 1] = dp[i] + ai(继续在前一个子段上加上ai);否则dp[i + 1] = ai(不加上前面的子段),
也就是说,状态转移方程:dp[i] = (dp[i-1] > 0 ? dp[i - 1] : 0) + buf[i];
二维的情况,例如下面的数据,
0 -2 -7 0
9 2 -6 2
-4 1 -4 7
-1 8 0 -2
分别用i j表示起始行和终止行,遍历所有的可能:我们考察其中一种情况 i=2 j=4,这样就相当与选中了2 3 4三行,求那几列的组合能获得最大值,由于总是 2 3 4行,所以我们可以将这3行”捆绑”起来,变为求 4(9-4-1),11(8+2+1),-10(-6-4+0),7(7+2-2)的最大子段和,问题成功转化为一维的情况。
<span style="font-size:14px;">#include<iostream>
#include<cstdio>
using namespace std;
const int N = 110;
int a[N][N], b[N];
int main(){
int n;
scanf("%d", &n);
for(int i = 1; i <= n; i++)
for(int j = 1; j <= n; j++){
scanf("%d", &a[i][j]);
a[i][j] += a[i - 1][j];
}
int max = a[1][1];
for(int i = 0; i <= n - 1; i++)
for(int j = i + 1; j <= n; j++){
memset(b, 0, sizeof(b));
for(int k = 1; k <= n; k++){
if(b[k - 1] >= 0)
b[k] = b[k - 1] + a[j][k] - a[i][k];
else
b[k] = a[j][k] - a[i][k];
if(max < b[k])
max = b[k];
}
}
printf("%d\n", max);
return 0;
}
</span>