HDU1086 You can Solve a Geometry Problem too

解决几何问题
本文介绍了一个关于线段交点计数的几何问题,并提供了一种解决方案。通过向量叉乘判断两条线段是否相交,考虑特殊情况并计算交点数量。

You can Solve a Geometry Problem too

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 10594    Accepted Submission(s): 5246


Problem Description
Many geometry(几何)problems were designed in the ACM/ICPC. And now, I also prepare a geometry problem for this final exam. According to the experience of many ACMers, geometry problems are always much trouble, but this problem is very easy, after all we are now attending an exam, not a contest :)
Give you N (1<=N<=100) segments(线段), please output the number of all intersections(交点). You should count repeatedly if M (M>2) segments intersect at the same point.

Note:
You can assume that two segments would not intersect at more than one point. 
 

Input
Input contains multiple test cases. Each test case contains a integer N (1=N<=100) in a line first, and then N lines follow. Each line describes one segment with four float values x1, y1, x2, y2 which are coordinates of the segment’s ending. 
A test case starting with 0 terminates the input and this test case is not to be processed.
 

Output
For each case, print the number of intersections, and one line one case.
 

Sample Input
2 0.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 3 0.00 0.00 1.00 1.00 0.00 1.00 1.00 0.000 0.00 0.00 1.00 0.00 0
 

Sample Output
1 3

     ACM暑假训练时做的题目,一个模板题判断两条线段是否相交,涉及到数学里的向量叉乘,判断条件如下:
     1.两条线段相交,一条线段的左右端点在分别另一条线段的左右两侧,向量积表示。
     2.特殊情况,一条线段的端点在另一条线段上,向量积是0,要进行特判。
    就是代码丑了点O__O "…

#include <iostream>
#include <cstdio>
using namespace std;
struct node {
  double x1,y1,x2,y2;
  }c[102];
int t;
int cross(node a,node b);
int on(double a,double b,double c,double d,double e,double f);
int main()
{
    while(~scanf("%d",&t)&&t){
        for(int i = 0;i < t;i++)
            scanf("%lf%lf%lf%lf",&c[i].x1,&c[i].y1,&c[i].x2,&c[i].y2);
        long long int sum = 0;
        for(int i = 0;i < t;i++){
            for(int j = i+1;j < t;j++){
                if(cross(c[i],c[j]))
                    sum++;
            }
        }
        printf("%I64d\n",sum);
    }
    return 0;
}
int cross(node a,node b)
{
  node r,t,s,x,y,z;
  //以线段a的(x1,y1)作为起点
  r.x1 = b.x1-a.x1;
  r.y1 = b.y1-a.y1;
  t.x1 = a.x2-a.x1;
  t.y1 = a.y2-a.y1;
  s.x1 = b.x2-a.x1;
  s.y1 = b.y2-a.y1;
  //以线段b的(x1,y1)作为起点
  x.x1 = a.x1-b.x1;
  x.y1 = a.y1-b.y1;
  y.x1 = b.x2-b.x1;
  y.y1 = b.y2-b.y1;
  z.x1 = a.x2-b.x1;
  z.y1 = a.y2-b.y1;
  //向量积运算
  if(((r.x1*t.y1-t.x1*r.y1<0&&s.x1*t.y1-t.x1*s.y1>0)||(r.x1*t.y1-t.x1*r.y1>0&&s.x1*t.y1-t.x1*s.y1<0))
     &&((x.x1*y.y1-y.x1*x.y1<0&&z.x1*y.y1-y.x1*z.y1>0)||(x.x1*y.y1-y.x1*x.y1>0&&z.x1*y.y1-y.x1*z.y1<0)))
     return 1;
  //四个特判
  else if(r.x1*t.y1-t.x1*r.y1==0&&on(a.x1,a.y1,a.x2,a.y2,b.x1,b.y1))
    return 1;
  else if(s.x1*t.y1-t.x1*s.y1==0&&on(a.x1,a.y1,a.x2,a.y2,b.x2,b.y2))
    return 1;
  else if(x.x1*y.y1-y.x1*x.y1==0&&on(b.x1,b.y1,b.x2,b.y2,a.x1,a.y1))
    return 1;
  else if(z.x1*y.y1-y.x1*z.y1==0&&on(b.x1,b.y1,b.x2,b.y2,a.x2,a.y2))
    return 1;
  return 0;
}
int on(double a,double b,double c,double d,double e,double f)
{
    if(min(a,c)<=e&&e<=max(a,c)&&min(b,d)<=f&&f<=max(b,d))
       return 1;
  return 0;
}


                
Delphi 12.3 作为一款面向 Windows 平台的集成开发环境,由 Embarcadero Technologies 负责其持续演进。该环境以 Object Pascal 语言为核心,并依托 Visual Component Library(VCL)框架,广泛应用于各类桌面软件、数据库系统及企业级解决方案的开发。在此生态中,Excel4Delphi 作为一个重要的社区开源项目,致力于搭建 Delphi 与 Microsoft Excel 之间的高效桥梁,使开发者能够在自研程序中直接调用 Excel 的文档处理、工作表管理、单元格操作及宏执行等功能。 该项目以库文件与组件包的形式提供,开发者将其集成至 Delphi 工程后,即可通过封装良好的接口实现对 Excel 的编程控制。具体功能涵盖创建与编辑工作簿、格式化单元格、批量导入导出数据,乃至执行内置公式与宏指令等高级操作。这一机制显著降低了在财务分析、报表自动生成、数据整理等场景中实现 Excel 功能集成的技术门槛,使开发者无需深入掌握 COM 编程或 Excel 底层 API 即可完成复杂任务。 使用 Excel4Delphi 需具备基础的 Delphi 编程知识,并对 Excel 对象模型有一定理解。实践中需注意不同 Excel 版本间的兼容性,并严格遵循项目文档进行环境配置与依赖部署。此外,操作过程中应遵循文件访问的最佳实践,例如确保目标文件未被独占锁定,并实施完整的异常处理机制,以防数据损毁或程序意外中断。 该项目的持续维护依赖于 Delphi 开发者社区的集体贡献,通过定期更新以适配新版开发环境与 Office 套件,并修复已发现的问题。对于需要深度融合 Excel 功能的 Delphi 应用而言,Excel4Delphi 提供了经过充分测试的可靠代码基础,使开发团队能更专注于业务逻辑与用户体验的优化,从而提升整体开发效率与软件质量。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值